Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202146146> ?p ?o ?g. }
- W3202146146 endingPage "110272" @default.
- W3202146146 startingPage "110272" @default.
- W3202146146 abstract "A deep learning-based defect identification scheme for the Pelton wheel has been developed. Initially, the raw vibration signal is passed through a time-varying filter based empirical mode decomposition (TVF-EMD). Filter parameters of TVF-EMD are optimized by a newly developed optimization algorithm i.e., amended grey wolf optimization (AGWO) with Kernel estimate for mutual information (KEMI) as its fitness function. The prominent IMF obtained is used to construct scalogram and prepare dataset. The training dataset trains the convolutional neural network (CNN) model whose accuracy was evaluated by the test dataset and founds to be 100%. The proposed AGWO algorithm was evaluated on twenty-three classical benchmark functions and the Wilcoxon test. Results obtained at benchmark functions and the Wilcoxon test validate the efficiency and superiority of the proposed method as compared to other techniques. A CNN classifier is compared with other learning models which suggested that CNN outperforms all learning models." @default.
- W3202146146 created "2021-10-11" @default.
- W3202146146 creator A5002927189 @default.
- W3202146146 creator A5020406323 @default.
- W3202146146 date "2022-01-01" @default.
- W3202146146 modified "2023-10-05" @default.
- W3202146146 title "An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton wheel" @default.
- W3202146146 cites W1669607139 @default.
- W3202146146 cites W1964018183 @default.
- W3202146146 cites W1975514583 @default.
- W3202146146 cites W1991687944 @default.
- W3202146146 cites W2001979953 @default.
- W3202146146 cites W2007221293 @default.
- W3202146146 cites W2014632329 @default.
- W3202146146 cites W2020009149 @default.
- W3202146146 cites W2043331954 @default.
- W3202146146 cites W2049287680 @default.
- W3202146146 cites W2061438946 @default.
- W3202146146 cites W2072955302 @default.
- W3202146146 cites W2103808164 @default.
- W3202146146 cites W2109364787 @default.
- W3202146146 cites W2131094830 @default.
- W3202146146 cites W2137421215 @default.
- W3202146146 cites W2143560894 @default.
- W3202146146 cites W2160694855 @default.
- W3202146146 cites W2203044710 @default.
- W3202146146 cites W2232317135 @default.
- W3202146146 cites W2261490426 @default.
- W3202146146 cites W2290883490 @default.
- W3202146146 cites W2494253314 @default.
- W3202146146 cites W2516969599 @default.
- W3202146146 cites W2521543067 @default.
- W3202146146 cites W2589504711 @default.
- W3202146146 cites W2592103183 @default.
- W3202146146 cites W2610288532 @default.
- W3202146146 cites W2735397268 @default.
- W3202146146 cites W2738900493 @default.
- W3202146146 cites W2776226778 @default.
- W3202146146 cites W2778801251 @default.
- W3202146146 cites W2781003581 @default.
- W3202146146 cites W2793159736 @default.
- W3202146146 cites W2887171350 @default.
- W3202146146 cites W2902302288 @default.
- W3202146146 cites W2996117967 @default.
- W3202146146 cites W3005789239 @default.
- W3202146146 cites W3021972511 @default.
- W3202146146 cites W3025640349 @default.
- W3202146146 cites W3027413276 @default.
- W3202146146 cites W3036432949 @default.
- W3202146146 cites W3037872117 @default.
- W3202146146 cites W3041822489 @default.
- W3202146146 cites W3083262938 @default.
- W3202146146 cites W3087263204 @default.
- W3202146146 cites W3087652231 @default.
- W3202146146 cites W3112535140 @default.
- W3202146146 cites W3112756409 @default.
- W3202146146 cites W3112955596 @default.
- W3202146146 cites W3136004793 @default.
- W3202146146 cites W3138121153 @default.
- W3202146146 cites W3148582937 @default.
- W3202146146 cites W3156187309 @default.
- W3202146146 cites W3157539115 @default.
- W3202146146 doi "https://doi.org/10.1016/j.measurement.2021.110272" @default.
- W3202146146 hasPublicationYear "2022" @default.
- W3202146146 type Work @default.
- W3202146146 sameAs 3202146146 @default.
- W3202146146 citedByCount "31" @default.
- W3202146146 countsByYear W32021461462022 @default.
- W3202146146 countsByYear W32021461462023 @default.
- W3202146146 crossrefType "journal-article" @default.
- W3202146146 hasAuthorship W3202146146A5002927189 @default.
- W3202146146 hasAuthorship W3202146146A5020406323 @default.
- W3202146146 hasConcept C105795698 @default.
- W3202146146 hasConcept C106131492 @default.
- W3202146146 hasConcept C11413529 @default.
- W3202146146 hasConcept C12868164 @default.
- W3202146146 hasConcept C13280743 @default.
- W3202146146 hasConcept C153180895 @default.
- W3202146146 hasConcept C154945302 @default.
- W3202146146 hasConcept C185798385 @default.
- W3202146146 hasConcept C205649164 @default.
- W3202146146 hasConcept C206041023 @default.
- W3202146146 hasConcept C25570617 @default.
- W3202146146 hasConcept C31972630 @default.
- W3202146146 hasConcept C33923547 @default.
- W3202146146 hasConcept C41008148 @default.
- W3202146146 hasConcept C50644808 @default.
- W3202146146 hasConcept C81363708 @default.
- W3202146146 hasConceptScore W3202146146C105795698 @default.
- W3202146146 hasConceptScore W3202146146C106131492 @default.
- W3202146146 hasConceptScore W3202146146C11413529 @default.
- W3202146146 hasConceptScore W3202146146C12868164 @default.
- W3202146146 hasConceptScore W3202146146C13280743 @default.
- W3202146146 hasConceptScore W3202146146C153180895 @default.
- W3202146146 hasConceptScore W3202146146C154945302 @default.
- W3202146146 hasConceptScore W3202146146C185798385 @default.
- W3202146146 hasConceptScore W3202146146C205649164 @default.
- W3202146146 hasConceptScore W3202146146C206041023 @default.