Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202186095> ?p ?o ?g. }
- W3202186095 endingPage "107024" @default.
- W3202186095 startingPage "107024" @default.
- W3202186095 abstract "Attrition of ash has a significant effect on the performance of a circulating fluidized bed (CFB) combustor, and the attrition rate coefficient Kaf is widely used to analyze the mass balance of the CFB combustor. In this study, a four-layer artificial neural network (ANN) model is developed to estimate the value of Kaf according to the chemical components of the ash based on a training database consisting of 40 sets of samples. An optimum structure comprising two hidden layers with ten neurons in each layer is adopted, and the mean square error for training and validation stages is reduced to 0.00175 and 0.13842, respectively. To verify the validity of the model, field tests are conducted in a large-scale CFB boiler by burning two types of coal with different blending ratios. The Kaf of the two kinds of coal is estimated using the trained ANN model. The ratio of the coal ash discharged via fly ash to the total coal ash decreases, while the Sauter mean diameter of the circulating material increases with an increase in the blending ratio of the coal with a smaller value of estimated Kaf; this exhibits good validity of the model." @default.
- W3202186095 created "2021-10-11" @default.
- W3202186095 creator A5000391744 @default.
- W3202186095 creator A5016258825 @default.
- W3202186095 creator A5053922785 @default.
- W3202186095 creator A5055552809 @default.
- W3202186095 date "2022-01-01" @default.
- W3202186095 modified "2023-10-14" @default.
- W3202186095 title "Prediction of attrition rate of coal ash for fluidized bed based on chemical composition with an artificial neural network model" @default.
- W3202186095 cites W1808149125 @default.
- W3202186095 cites W1965906156 @default.
- W3202186095 cites W1967415846 @default.
- W3202186095 cites W1980064454 @default.
- W3202186095 cites W1980563142 @default.
- W3202186095 cites W1981956534 @default.
- W3202186095 cites W1988084269 @default.
- W3202186095 cites W1988508922 @default.
- W3202186095 cites W2000902021 @default.
- W3202186095 cites W2008900996 @default.
- W3202186095 cites W2017934850 @default.
- W3202186095 cites W2024276459 @default.
- W3202186095 cites W2026406785 @default.
- W3202186095 cites W2045686432 @default.
- W3202186095 cites W2047028534 @default.
- W3202186095 cites W2048333415 @default.
- W3202186095 cites W2071640252 @default.
- W3202186095 cites W2075485533 @default.
- W3202186095 cites W2077580027 @default.
- W3202186095 cites W2082143492 @default.
- W3202186095 cites W2088593278 @default.
- W3202186095 cites W2091736795 @default.
- W3202186095 cites W2138589860 @default.
- W3202186095 cites W2236349160 @default.
- W3202186095 cites W2330856043 @default.
- W3202186095 cites W2332273308 @default.
- W3202186095 cites W2399064842 @default.
- W3202186095 cites W2548221589 @default.
- W3202186095 cites W2769471137 @default.
- W3202186095 cites W2790247499 @default.
- W3202186095 cites W2800502736 @default.
- W3202186095 cites W2899554377 @default.
- W3202186095 cites W2909973446 @default.
- W3202186095 cites W2913564109 @default.
- W3202186095 cites W2946176132 @default.
- W3202186095 cites W2978007135 @default.
- W3202186095 cites W2983561609 @default.
- W3202186095 cites W2999079573 @default.
- W3202186095 cites W2999885888 @default.
- W3202186095 cites W3004579216 @default.
- W3202186095 cites W3033019682 @default.
- W3202186095 cites W3124701424 @default.
- W3202186095 cites W3125529420 @default.
- W3202186095 cites W3130230714 @default.
- W3202186095 cites W3168829777 @default.
- W3202186095 doi "https://doi.org/10.1016/j.fuproc.2021.107024" @default.
- W3202186095 hasPublicationYear "2022" @default.
- W3202186095 type Work @default.
- W3202186095 sameAs 3202186095 @default.
- W3202186095 citedByCount "4" @default.
- W3202186095 countsByYear W32021860952023 @default.
- W3202186095 crossrefType "journal-article" @default.
- W3202186095 hasAuthorship W3202186095A5000391744 @default.
- W3202186095 hasAuthorship W3202186095A5016258825 @default.
- W3202186095 hasAuthorship W3202186095A5053922785 @default.
- W3202186095 hasAuthorship W3202186095A5055552809 @default.
- W3202186095 hasConcept C105923489 @default.
- W3202186095 hasConcept C127413603 @default.
- W3202186095 hasConcept C154945302 @default.
- W3202186095 hasConcept C178790620 @default.
- W3202186095 hasConcept C185592680 @default.
- W3202186095 hasConcept C192562407 @default.
- W3202186095 hasConcept C199343813 @default.
- W3202186095 hasConcept C2780013297 @default.
- W3202186095 hasConcept C2780553607 @default.
- W3202186095 hasConcept C39432304 @default.
- W3202186095 hasConcept C41008148 @default.
- W3202186095 hasConcept C50644808 @default.
- W3202186095 hasConcept C518851703 @default.
- W3202186095 hasConcept C528095902 @default.
- W3202186095 hasConcept C548081761 @default.
- W3202186095 hasConcept C59269787 @default.
- W3202186095 hasConcept C71924100 @default.
- W3202186095 hasConcept C83104080 @default.
- W3202186095 hasConcept C87343466 @default.
- W3202186095 hasConceptScore W3202186095C105923489 @default.
- W3202186095 hasConceptScore W3202186095C127413603 @default.
- W3202186095 hasConceptScore W3202186095C154945302 @default.
- W3202186095 hasConceptScore W3202186095C178790620 @default.
- W3202186095 hasConceptScore W3202186095C185592680 @default.
- W3202186095 hasConceptScore W3202186095C192562407 @default.
- W3202186095 hasConceptScore W3202186095C199343813 @default.
- W3202186095 hasConceptScore W3202186095C2780013297 @default.
- W3202186095 hasConceptScore W3202186095C2780553607 @default.
- W3202186095 hasConceptScore W3202186095C39432304 @default.
- W3202186095 hasConceptScore W3202186095C41008148 @default.
- W3202186095 hasConceptScore W3202186095C50644808 @default.
- W3202186095 hasConceptScore W3202186095C518851703 @default.
- W3202186095 hasConceptScore W3202186095C528095902 @default.