Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202222650> ?p ?o ?g. }
- W3202222650 abstract "Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future." @default.
- W3202222650 created "2021-10-11" @default.
- W3202222650 creator A5026684550 @default.
- W3202222650 creator A5033154908 @default.
- W3202222650 creator A5039807259 @default.
- W3202222650 creator A5059053033 @default.
- W3202222650 creator A5065198374 @default.
- W3202222650 creator A5085083529 @default.
- W3202222650 date "2021-10-11" @default.
- W3202222650 modified "2023-10-01" @default.
- W3202222650 title "A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced‐order model" @default.
- W3202222650 cites W1254424750 @default.
- W3202222650 cites W1561244914 @default.
- W3202222650 cites W1989781273 @default.
- W3202222650 cites W2015541104 @default.
- W3202222650 cites W2018220075 @default.
- W3202222650 cites W2020685140 @default.
- W3202222650 cites W2029767409 @default.
- W3202222650 cites W2029870933 @default.
- W3202222650 cites W2034914869 @default.
- W3202222650 cites W2036745273 @default.
- W3202222650 cites W2041417176 @default.
- W3202222650 cites W2052520192 @default.
- W3202222650 cites W2065424739 @default.
- W3202222650 cites W2067285354 @default.
- W3202222650 cites W2077769771 @default.
- W3202222650 cites W2097838640 @default.
- W3202222650 cites W2104821869 @default.
- W3202222650 cites W2111599533 @default.
- W3202222650 cites W2122016897 @default.
- W3202222650 cites W2165698076 @default.
- W3202222650 cites W2168308757 @default.
- W3202222650 cites W2174319925 @default.
- W3202222650 cites W2182654318 @default.
- W3202222650 cites W2263185714 @default.
- W3202222650 cites W2338780392 @default.
- W3202222650 cites W2544117824 @default.
- W3202222650 cites W2561100332 @default.
- W3202222650 cites W2577795249 @default.
- W3202222650 cites W2793422464 @default.
- W3202222650 cites W2810837128 @default.
- W3202222650 cites W2893304847 @default.
- W3202222650 cites W2954517420 @default.
- W3202222650 cites W2958604052 @default.
- W3202222650 cites W2971656086 @default.
- W3202222650 cites W2979815547 @default.
- W3202222650 cites W2991250132 @default.
- W3202222650 cites W2994149637 @default.
- W3202222650 cites W2994230705 @default.
- W3202222650 cites W3001604145 @default.
- W3202222650 cites W3009345075 @default.
- W3202222650 cites W3010152544 @default.
- W3202222650 cites W3022017325 @default.
- W3202222650 cites W3036669833 @default.
- W3202222650 cites W3046534412 @default.
- W3202222650 cites W3088135601 @default.
- W3202222650 cites W3091891999 @default.
- W3202222650 cites W3107399755 @default.
- W3202222650 cites W3122454529 @default.
- W3202222650 cites W3125603166 @default.
- W3202222650 cites W4253797853 @default.
- W3202222650 cites W621251951 @default.
- W3202222650 doi "https://doi.org/10.1002/cnm.3533" @default.
- W3202222650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34585523" @default.
- W3202222650 hasPublicationYear "2021" @default.
- W3202222650 type Work @default.
- W3202222650 sameAs 3202222650 @default.
- W3202222650 citedByCount "8" @default.
- W3202222650 countsByYear W32022226502021 @default.
- W3202222650 countsByYear W32022226502022 @default.
- W3202222650 countsByYear W32022226502023 @default.
- W3202222650 crossrefType "journal-article" @default.
- W3202222650 hasAuthorship W3202222650A5026684550 @default.
- W3202222650 hasAuthorship W3202222650A5033154908 @default.
- W3202222650 hasAuthorship W3202222650A5039807259 @default.
- W3202222650 hasAuthorship W3202222650A5059053033 @default.
- W3202222650 hasAuthorship W3202222650A5065198374 @default.
- W3202222650 hasAuthorship W3202222650A5085083529 @default.
- W3202222650 hasConcept C108583219 @default.
- W3202222650 hasConcept C111919701 @default.
- W3202222650 hasConcept C11413529 @default.
- W3202222650 hasConcept C119857082 @default.
- W3202222650 hasConcept C121332964 @default.
- W3202222650 hasConcept C124101348 @default.
- W3202222650 hasConcept C136764020 @default.
- W3202222650 hasConcept C153180895 @default.
- W3202222650 hasConcept C154945302 @default.
- W3202222650 hasConcept C158622935 @default.
- W3202222650 hasConcept C167928553 @default.
- W3202222650 hasConcept C183003079 @default.
- W3202222650 hasConcept C197424946 @default.
- W3202222650 hasConcept C41008148 @default.
- W3202222650 hasConcept C50644808 @default.
- W3202222650 hasConcept C554190296 @default.
- W3202222650 hasConcept C62520636 @default.
- W3202222650 hasConcept C76155785 @default.
- W3202222650 hasConcept C81363708 @default.
- W3202222650 hasConcept C98045186 @default.
- W3202222650 hasConceptScore W3202222650C108583219 @default.
- W3202222650 hasConceptScore W3202222650C111919701 @default.