Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202230209> ?p ?o ?g. }
- W3202230209 abstract "In medical image segmentation, supervised deep networks’ success comes at the cost of requiring abundant labeled data. While asking domain experts to annotate only one or a few of the cohort’s images is feasible, annotating all available images is impractical. This issue is further exacerbated when pre-trained deep networks are exposed to a new image dataset from an unfamiliar distribution. Using available open-source data for ad-hoc transfer learning or hand-tuned techniques for data augmentation only provides suboptimal solutions. Motivated by atlas-based segmentation, we propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs via learning transformations from a single labeled atlas to the unlabeled data. Our work’s central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy that cluster unlabeled volumetric images with similar styles together. Unlike previous methods, our method does not require input volumes at inference time to synthesize new images. Instead, it can generate diversified volumetric image-segmentation pairs from a prior distribution given a single or multi-site dataset. Augmented data generated by our method used to train the segmentation network provide significant improvements over state-of-the-art deep one-shot learning methods on the task of brain MRI segmentation. Ablation studies further exemplified that the proposed appearance model and joint training are crucial to synthesize realistic examples compared to existing medical registration methods. The code, data, and models are available at https://github.com/devavratTomar/SST/." @default.
- W3202230209 created "2021-10-11" @default.
- W3202230209 creator A5052284803 @default.
- W3202230209 creator A5058274549 @default.
- W3202230209 creator A5067782007 @default.
- W3202230209 creator A5067894953 @default.
- W3202230209 creator A5074768533 @default.
- W3202230209 creator A5085627246 @default.
- W3202230209 date "2022-01-01" @default.
- W3202230209 modified "2023-09-30" @default.
- W3202230209 title "Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation" @default.
- W3202230209 cites W1545004291 @default.
- W3202230209 cites W1580389772 @default.
- W3202230209 cites W1983364832 @default.
- W3202230209 cites W2043626403 @default.
- W3202230209 cites W2135535334 @default.
- W3202230209 cites W2149128281 @default.
- W3202230209 cites W2150534249 @default.
- W3202230209 cites W2310992461 @default.
- W3202230209 cites W2513595145 @default.
- W3202230209 cites W2593414223 @default.
- W3202230209 cites W2602106906 @default.
- W3202230209 cites W2603777577 @default.
- W3202230209 cites W2621028221 @default.
- W3202230209 cites W2758288694 @default.
- W3202230209 cites W2798991696 @default.
- W3202230209 cites W2889890092 @default.
- W3202230209 cites W2943147888 @default.
- W3202230209 cites W2962736273 @default.
- W3202230209 cites W2962914239 @default.
- W3202230209 cites W2964210793 @default.
- W3202230209 cites W2964250774 @default.
- W3202230209 cites W2979699329 @default.
- W3202230209 cites W2981865522 @default.
- W3202230209 cites W2983393775 @default.
- W3202230209 cites W2990230185 @default.
- W3202230209 cites W3034199407 @default.
- W3202230209 cites W3034930876 @default.
- W3202230209 cites W3035131250 @default.
- W3202230209 cites W3035524453 @default.
- W3202230209 cites W3083087624 @default.
- W3202230209 cites W3092263770 @default.
- W3202230209 cites W3092471502 @default.
- W3202230209 cites W3096165964 @default.
- W3202230209 cites W3104164805 @default.
- W3202230209 cites W3104258355 @default.
- W3202230209 cites W3133516013 @default.
- W3202230209 cites W3204633161 @default.
- W3202230209 cites W4241074797 @default.
- W3202230209 doi "https://doi.org/10.1109/wacv51458.2022.00180" @default.
- W3202230209 hasPublicationYear "2022" @default.
- W3202230209 type Work @default.
- W3202230209 sameAs 3202230209 @default.
- W3202230209 citedByCount "3" @default.
- W3202230209 countsByYear W32022302092023 @default.
- W3202230209 crossrefType "proceedings-article" @default.
- W3202230209 hasAuthorship W3202230209A5052284803 @default.
- W3202230209 hasAuthorship W3202230209A5058274549 @default.
- W3202230209 hasAuthorship W3202230209A5067782007 @default.
- W3202230209 hasAuthorship W3202230209A5067894953 @default.
- W3202230209 hasAuthorship W3202230209A5074768533 @default.
- W3202230209 hasAuthorship W3202230209A5085627246 @default.
- W3202230209 hasBestOaLocation W32022302092 @default.
- W3202230209 hasConcept C108583219 @default.
- W3202230209 hasConcept C119857082 @default.
- W3202230209 hasConcept C124504099 @default.
- W3202230209 hasConcept C150899416 @default.
- W3202230209 hasConcept C153180895 @default.
- W3202230209 hasConcept C154945302 @default.
- W3202230209 hasConcept C167966045 @default.
- W3202230209 hasConcept C2776214188 @default.
- W3202230209 hasConcept C31972630 @default.
- W3202230209 hasConcept C39890363 @default.
- W3202230209 hasConcept C41008148 @default.
- W3202230209 hasConcept C89600930 @default.
- W3202230209 hasConceptScore W3202230209C108583219 @default.
- W3202230209 hasConceptScore W3202230209C119857082 @default.
- W3202230209 hasConceptScore W3202230209C124504099 @default.
- W3202230209 hasConceptScore W3202230209C150899416 @default.
- W3202230209 hasConceptScore W3202230209C153180895 @default.
- W3202230209 hasConceptScore W3202230209C154945302 @default.
- W3202230209 hasConceptScore W3202230209C167966045 @default.
- W3202230209 hasConceptScore W3202230209C2776214188 @default.
- W3202230209 hasConceptScore W3202230209C31972630 @default.
- W3202230209 hasConceptScore W3202230209C39890363 @default.
- W3202230209 hasConceptScore W3202230209C41008148 @default.
- W3202230209 hasConceptScore W3202230209C89600930 @default.
- W3202230209 hasLocation W32022302091 @default.
- W3202230209 hasLocation W32022302092 @default.
- W3202230209 hasOpenAccess W3202230209 @default.
- W3202230209 hasPrimaryLocation W32022302091 @default.
- W3202230209 hasRelatedWork W1669643531 @default.
- W3202230209 hasRelatedWork W2110230079 @default.
- W3202230209 hasRelatedWork W2117933325 @default.
- W3202230209 hasRelatedWork W2122581818 @default.
- W3202230209 hasRelatedWork W2159066190 @default.
- W3202230209 hasRelatedWork W2739874619 @default.
- W3202230209 hasRelatedWork W2790662084 @default.
- W3202230209 hasRelatedWork W2948658236 @default.
- W3202230209 hasRelatedWork W4213299466 @default.