Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202292017> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3202292017 abstract "We investigate the power of time series analysis based on a variety of information-theoretic approaches from statistics (AIC, BIC) and machine learning (Minimum Message Length) - and we then compare their efficacy with traditional time series model and with hybrids involving deep learning. More specifically, we develop AIC, BIC and Minimum Message Length (MML) ARMA (autoregressive moving average) time series models - with this Bayesian information-theoretic MML ARMA modelling already being new work. We then study deep learning based algorithms in time series forecasting, using Long Short Term Memory (LSTM), and we then combine this with the ARMA modelling to produce a hybrid ARMA-LSTM prediction. Part of the purpose of the use of LSTM is to seek capture any hidden information in the residuals left from the traditional ARMA model. We show that MML not only outperforms earlier statistical approaches to ARMA modelling, but we further show that the hybrid MML ARMA-LSTM models outperform both ARMA models and LSTM models." @default.
- W3202292017 created "2021-10-11" @default.
- W3202292017 creator A5033128828 @default.
- W3202292017 creator A5038085743 @default.
- W3202292017 creator A5067355279 @default.
- W3202292017 creator A5089476547 @default.
- W3202292017 date "2021-10-04" @default.
- W3202292017 modified "2023-10-16" @default.
- W3202292017 title "Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting" @default.
- W3202292017 doi "https://doi.org/10.20944/preprints202110.0049.v1" @default.
- W3202292017 hasPublicationYear "2021" @default.
- W3202292017 type Work @default.
- W3202292017 sameAs 3202292017 @default.
- W3202292017 citedByCount "1" @default.
- W3202292017 countsByYear W32022920172021 @default.
- W3202292017 crossrefType "posted-content" @default.
- W3202292017 hasAuthorship W3202292017A5033128828 @default.
- W3202292017 hasAuthorship W3202292017A5038085743 @default.
- W3202292017 hasAuthorship W3202292017A5067355279 @default.
- W3202292017 hasAuthorship W3202292017A5089476547 @default.
- W3202292017 hasBestOaLocation W32022920171 @default.
- W3202292017 hasConcept C105795698 @default.
- W3202292017 hasConcept C107673813 @default.
- W3202292017 hasConcept C11413529 @default.
- W3202292017 hasConcept C119857082 @default.
- W3202292017 hasConcept C143724316 @default.
- W3202292017 hasConcept C151406439 @default.
- W3202292017 hasConcept C151730666 @default.
- W3202292017 hasConcept C153180895 @default.
- W3202292017 hasConcept C154945302 @default.
- W3202292017 hasConcept C159877910 @default.
- W3202292017 hasConcept C168136583 @default.
- W3202292017 hasConcept C175706884 @default.
- W3202292017 hasConcept C2776709221 @default.
- W3202292017 hasConcept C31972630 @default.
- W3202292017 hasConcept C33923547 @default.
- W3202292017 hasConcept C41008148 @default.
- W3202292017 hasConcept C74883015 @default.
- W3202292017 hasConcept C86803240 @default.
- W3202292017 hasConcept C93959086 @default.
- W3202292017 hasConceptScore W3202292017C105795698 @default.
- W3202292017 hasConceptScore W3202292017C107673813 @default.
- W3202292017 hasConceptScore W3202292017C11413529 @default.
- W3202292017 hasConceptScore W3202292017C119857082 @default.
- W3202292017 hasConceptScore W3202292017C143724316 @default.
- W3202292017 hasConceptScore W3202292017C151406439 @default.
- W3202292017 hasConceptScore W3202292017C151730666 @default.
- W3202292017 hasConceptScore W3202292017C153180895 @default.
- W3202292017 hasConceptScore W3202292017C154945302 @default.
- W3202292017 hasConceptScore W3202292017C159877910 @default.
- W3202292017 hasConceptScore W3202292017C168136583 @default.
- W3202292017 hasConceptScore W3202292017C175706884 @default.
- W3202292017 hasConceptScore W3202292017C2776709221 @default.
- W3202292017 hasConceptScore W3202292017C31972630 @default.
- W3202292017 hasConceptScore W3202292017C33923547 @default.
- W3202292017 hasConceptScore W3202292017C41008148 @default.
- W3202292017 hasConceptScore W3202292017C74883015 @default.
- W3202292017 hasConceptScore W3202292017C86803240 @default.
- W3202292017 hasConceptScore W3202292017C93959086 @default.
- W3202292017 hasLocation W32022920171 @default.
- W3202292017 hasOpenAccess W3202292017 @default.
- W3202292017 hasPrimaryLocation W32022920171 @default.
- W3202292017 hasRelatedWork W2015900095 @default.
- W3202292017 hasRelatedWork W2024700944 @default.
- W3202292017 hasRelatedWork W2382528315 @default.
- W3202292017 hasRelatedWork W3127830124 @default.
- W3202292017 hasRelatedWork W4235728994 @default.
- W3202292017 hasRelatedWork W4250518929 @default.
- W3202292017 hasRelatedWork W81705085 @default.
- W3202292017 hasRelatedWork W2185837235 @default.
- W3202292017 hasRelatedWork W2186383081 @default.
- W3202292017 hasRelatedWork W3121202112 @default.
- W3202292017 isParatext "false" @default.
- W3202292017 isRetracted "false" @default.
- W3202292017 magId "3202292017" @default.
- W3202292017 workType "article" @default.