Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202316997> ?p ?o ?g. }
- W3202316997 endingPage "4282" @default.
- W3202316997 startingPage "4269" @default.
- W3202316997 abstract "Abstract Multimodel combinations are a well‐established methodology in weather and climate prediction and their benefits have been widely discussed in the literature. Typical approaches involve combining the output of different numerical weather prediction (NWP) models using constant weighting factors, either uniformly distributed or determined through a prior skill assessment. This strategy, however, can lead to suboptimal levels of skill, as the performance of NWP models can vary with time (e.g., seasonally varying skill, changes in the forecasting system). Moreover, standard combination methods are not designed to incorporate predictions derived from sources other than NWP systems (e.g., climatological or time‐series forecasts). New algorithms developed within the machine learning community provide the opportunity for “online prediction” (also referred to as “sequential learning”). These methods consider a set of weighted predictors or “experts” to produce subsequent predictions in which the combination or “mixture” is updated at each step to optimize a loss or skill function. The predictors are highly flexible and can combine both NWP and statistically derived forecasts transparently. A set of these online prediction methods is tested and compared with standard multimodel combination techniques to assess their usefulness. The methods are general and can be applied to any model‐derived predictand. A set of weather‐sensitive European country‐aggregate energy variables (electricity demand and wind power) is selected for demonstration purposes. Results show that these innovative methods exhibit significant skill improvements (i.e., between 5 and 15% improvement in the probabilistic skill) with respect to standard multimodel combination techniques for lead weeks up to 5. The incorporation of statistically derived predictors (based on historical climate data) alongside NWP forecasts is also shown to contribute significant skill improvements in many cases." @default.
- W3202316997 created "2021-10-11" @default.
- W3202316997 creator A5032132614 @default.
- W3202316997 creator A5062381013 @default.
- W3202316997 creator A5091533573 @default.
- W3202316997 date "2021-10-01" @default.
- W3202316997 modified "2023-10-14" @default.
- W3202316997 title "A new approach to extended‐range multimodel forecasting: Sequential learning algorithms" @default.
- W3202316997 cites W1570963478 @default.
- W3202316997 cites W1835684196 @default.
- W3202316997 cites W1969637693 @default.
- W3202316997 cites W1976255336 @default.
- W3202316997 cites W1984113680 @default.
- W3202316997 cites W1984486655 @default.
- W3202316997 cites W2033547792 @default.
- W3202316997 cites W2052070544 @default.
- W3202316997 cites W2053230351 @default.
- W3202316997 cites W2060172488 @default.
- W3202316997 cites W2063995723 @default.
- W3202316997 cites W2069317438 @default.
- W3202316997 cites W2070270688 @default.
- W3202316997 cites W2084279619 @default.
- W3202316997 cites W2094991982 @default.
- W3202316997 cites W2100956194 @default.
- W3202316997 cites W2110065044 @default.
- W3202316997 cites W2125536334 @default.
- W3202316997 cites W2143688011 @default.
- W3202316997 cites W2155454238 @default.
- W3202316997 cites W2158840489 @default.
- W3202316997 cites W2160581812 @default.
- W3202316997 cites W2275088575 @default.
- W3202316997 cites W2327401273 @default.
- W3202316997 cites W2462086660 @default.
- W3202316997 cites W2471266319 @default.
- W3202316997 cites W2517285177 @default.
- W3202316997 cites W2556820181 @default.
- W3202316997 cites W2581601229 @default.
- W3202316997 cites W2610217940 @default.
- W3202316997 cites W2805616630 @default.
- W3202316997 cites W2898237388 @default.
- W3202316997 cites W2898276922 @default.
- W3202316997 cites W2903075880 @default.
- W3202316997 cites W2903758338 @default.
- W3202316997 cites W2992002560 @default.
- W3202316997 cites W3025949386 @default.
- W3202316997 cites W3038903348 @default.
- W3202316997 cites W3044376581 @default.
- W3202316997 cites W3124213808 @default.
- W3202316997 cites W4239401614 @default.
- W3202316997 cites W4291327732 @default.
- W3202316997 doi "https://doi.org/10.1002/qj.4177" @default.
- W3202316997 hasPublicationYear "2021" @default.
- W3202316997 type Work @default.
- W3202316997 sameAs 3202316997 @default.
- W3202316997 citedByCount "5" @default.
- W3202316997 countsByYear W32023169972021 @default.
- W3202316997 countsByYear W32023169972022 @default.
- W3202316997 countsByYear W32023169972023 @default.
- W3202316997 crossrefType "journal-article" @default.
- W3202316997 hasAuthorship W3202316997A5032132614 @default.
- W3202316997 hasAuthorship W3202316997A5062381013 @default.
- W3202316997 hasAuthorship W3202316997A5091533573 @default.
- W3202316997 hasBestOaLocation W32023169971 @default.
- W3202316997 hasConcept C11413529 @default.
- W3202316997 hasConcept C119857082 @default.
- W3202316997 hasConcept C121332964 @default.
- W3202316997 hasConcept C122282355 @default.
- W3202316997 hasConcept C126838900 @default.
- W3202316997 hasConcept C127413603 @default.
- W3202316997 hasConcept C146978453 @default.
- W3202316997 hasConcept C147947694 @default.
- W3202316997 hasConcept C153294291 @default.
- W3202316997 hasConcept C154945302 @default.
- W3202316997 hasConcept C170061395 @default.
- W3202316997 hasConcept C177264268 @default.
- W3202316997 hasConcept C183115368 @default.
- W3202316997 hasConcept C199360897 @default.
- W3202316997 hasConcept C204323151 @default.
- W3202316997 hasConcept C41008148 @default.
- W3202316997 hasConcept C49937458 @default.
- W3202316997 hasConcept C71924100 @default.
- W3202316997 hasConceptScore W3202316997C11413529 @default.
- W3202316997 hasConceptScore W3202316997C119857082 @default.
- W3202316997 hasConceptScore W3202316997C121332964 @default.
- W3202316997 hasConceptScore W3202316997C122282355 @default.
- W3202316997 hasConceptScore W3202316997C126838900 @default.
- W3202316997 hasConceptScore W3202316997C127413603 @default.
- W3202316997 hasConceptScore W3202316997C146978453 @default.
- W3202316997 hasConceptScore W3202316997C147947694 @default.
- W3202316997 hasConceptScore W3202316997C153294291 @default.
- W3202316997 hasConceptScore W3202316997C154945302 @default.
- W3202316997 hasConceptScore W3202316997C170061395 @default.
- W3202316997 hasConceptScore W3202316997C177264268 @default.
- W3202316997 hasConceptScore W3202316997C183115368 @default.
- W3202316997 hasConceptScore W3202316997C199360897 @default.
- W3202316997 hasConceptScore W3202316997C204323151 @default.
- W3202316997 hasConceptScore W3202316997C41008148 @default.
- W3202316997 hasConceptScore W3202316997C49937458 @default.