Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202317256> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3202317256 endingPage "101305" @default.
- W3202317256 startingPage "101305" @default.
- W3202317256 abstract "Speech summarization techniques take human speech as input and then output an abridged version as text or speech. Speech summarization has applications in many domains from information technology to health care, for example improving speech archives or reducing clinical documentation burden. This scoping review maps close to 2 decades of speech summarization literature, spanning from the early machine learning works up to ensemble models, with no restrictions on the language summarized, research method, or paper type. We reviewed a total of 110 papers out of a set of 188 found through a literature search and extracted speech features used, methods, scope, and training corpora. Most studies employ one of four speech summarization architectures: (1) Sentence extraction and compaction; (2) Feature extraction and classification or rank-based sentence selection; (3) Sentence compression and compression summarization; and (4) Language modelling. We also discuss the strengths and weaknesses of these different methods and speech features. Overall, supervised methods (e.g. Hidden Markov support vector machines, Ranking support vector machines, Conditional random fields) performed better than unsupervised methods. As supervised methods require manually annotated training data which can be costly, there was more interest in unsupervised methods. Recent research into unsupervised methods focusses on extending language modelling, for example by combining Uni-gram modelling with deep neural networks. This review does not include recent work in deep learning." @default.
- W3202317256 created "2021-10-11" @default.
- W3202317256 creator A5004159814 @default.
- W3202317256 creator A5036989189 @default.
- W3202317256 creator A5037529506 @default.
- W3202317256 creator A5043088724 @default.
- W3202317256 creator A5047191996 @default.
- W3202317256 creator A5052059250 @default.
- W3202317256 creator A5088581420 @default.
- W3202317256 date "2022-03-01" @default.
- W3202317256 modified "2023-10-16" @default.
- W3202317256 title "Symbolic and Statistical Learning Approaches to Speech Summarization: A Scoping Review" @default.
- W3202317256 cites W1969700396 @default.
- W3202317256 cites W1976852923 @default.
- W3202317256 cites W2005501262 @default.
- W3202317256 cites W2015071310 @default.
- W3202317256 cites W2016269468 @default.
- W3202317256 cites W2036010191 @default.
- W3202317256 cites W2075950485 @default.
- W3202317256 cites W2093969193 @default.
- W3202317256 cites W2097321121 @default.
- W3202317256 cites W2100845659 @default.
- W3202317256 cites W2105321265 @default.
- W3202317256 cites W2107326178 @default.
- W3202317256 cites W2112317151 @default.
- W3202317256 cites W2135077887 @default.
- W3202317256 cites W2135625787 @default.
- W3202317256 cites W2140365917 @default.
- W3202317256 cites W2151844545 @default.
- W3202317256 cites W2154291897 @default.
- W3202317256 cites W2158632489 @default.
- W3202317256 cites W2238929664 @default.
- W3202317256 cites W2752395160 @default.
- W3202317256 cites W2843010082 @default.
- W3202317256 cites W2897608176 @default.
- W3202317256 cites W2962838727 @default.
- W3202317256 cites W2989925457 @default.
- W3202317256 doi "https://doi.org/10.1016/j.csl.2021.101305" @default.
- W3202317256 hasPublicationYear "2022" @default.
- W3202317256 type Work @default.
- W3202317256 sameAs 3202317256 @default.
- W3202317256 citedByCount "1" @default.
- W3202317256 countsByYear W32023172562022 @default.
- W3202317256 crossrefType "journal-article" @default.
- W3202317256 hasAuthorship W3202317256A5004159814 @default.
- W3202317256 hasAuthorship W3202317256A5036989189 @default.
- W3202317256 hasAuthorship W3202317256A5037529506 @default.
- W3202317256 hasAuthorship W3202317256A5043088724 @default.
- W3202317256 hasAuthorship W3202317256A5047191996 @default.
- W3202317256 hasAuthorship W3202317256A5052059250 @default.
- W3202317256 hasAuthorship W3202317256A5088581420 @default.
- W3202317256 hasConcept C108583219 @default.
- W3202317256 hasConcept C119857082 @default.
- W3202317256 hasConcept C137293760 @default.
- W3202317256 hasConcept C154945302 @default.
- W3202317256 hasConcept C170858558 @default.
- W3202317256 hasConcept C204321447 @default.
- W3202317256 hasConcept C23224414 @default.
- W3202317256 hasConcept C2777530160 @default.
- W3202317256 hasConcept C28490314 @default.
- W3202317256 hasConcept C41008148 @default.
- W3202317256 hasConcept C8038995 @default.
- W3202317256 hasConceptScore W3202317256C108583219 @default.
- W3202317256 hasConceptScore W3202317256C119857082 @default.
- W3202317256 hasConceptScore W3202317256C137293760 @default.
- W3202317256 hasConceptScore W3202317256C154945302 @default.
- W3202317256 hasConceptScore W3202317256C170858558 @default.
- W3202317256 hasConceptScore W3202317256C204321447 @default.
- W3202317256 hasConceptScore W3202317256C23224414 @default.
- W3202317256 hasConceptScore W3202317256C2777530160 @default.
- W3202317256 hasConceptScore W3202317256C28490314 @default.
- W3202317256 hasConceptScore W3202317256C41008148 @default.
- W3202317256 hasConceptScore W3202317256C8038995 @default.
- W3202317256 hasFunder F4320334705 @default.
- W3202317256 hasLocation W32023172561 @default.
- W3202317256 hasOpenAccess W3202317256 @default.
- W3202317256 hasPrimaryLocation W32023172561 @default.
- W3202317256 hasRelatedWork W1562892804 @default.
- W3202317256 hasRelatedWork W2747680751 @default.
- W3202317256 hasRelatedWork W2989698750 @default.
- W3202317256 hasRelatedWork W3082895349 @default.
- W3202317256 hasRelatedWork W3107474891 @default.
- W3202317256 hasRelatedWork W3123344745 @default.
- W3202317256 hasRelatedWork W4211044943 @default.
- W3202317256 hasRelatedWork W4221136938 @default.
- W3202317256 hasRelatedWork W4297797377 @default.
- W3202317256 hasRelatedWork W4360986142 @default.
- W3202317256 hasVolume "72" @default.
- W3202317256 isParatext "false" @default.
- W3202317256 isRetracted "false" @default.
- W3202317256 magId "3202317256" @default.
- W3202317256 workType "article" @default.