Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202330493> ?p ?o ?g. }
- W3202330493 endingPage "118607" @default.
- W3202330493 startingPage "118607" @default.
- W3202330493 abstract "The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several strategies in which the out-of-the-box version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches for detecting space-independent modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications." @default.
- W3202330493 created "2021-10-11" @default.
- W3202330493 creator A5005941814 @default.
- W3202330493 creator A5011949827 @default.
- W3202330493 creator A5029840174 @default.
- W3202330493 creator A5034940814 @default.
- W3202330493 creator A5050976581 @default.
- W3202330493 creator A5075493826 @default.
- W3202330493 creator A5086580185 @default.
- W3202330493 creator A5087180664 @default.
- W3202330493 creator A5090820512 @default.
- W3202330493 date "2021-12-01" @default.
- W3202330493 modified "2023-10-17" @default.
- W3202330493 title "Modularity maximization as a flexible and generic framework for brain network exploratory analysis" @default.
- W3202330493 cites W1449393047 @default.
- W3202330493 cites W1574010683 @default.
- W3202330493 cites W1907418661 @default.
- W3202330493 cites W1975389666 @default.
- W3202330493 cites W1976623182 @default.
- W3202330493 cites W1978825280 @default.
- W3202330493 cites W1979426401 @default.
- W3202330493 cites W1988396475 @default.
- W3202330493 cites W1994341528 @default.
- W3202330493 cites W1995996823 @default.
- W3202330493 cites W1998071216 @default.
- W3202330493 cites W1999653836 @default.
- W3202330493 cites W2002429803 @default.
- W3202330493 cites W2002627566 @default.
- W3202330493 cites W2006312249 @default.
- W3202330493 cites W2011027186 @default.
- W3202330493 cites W2012559638 @default.
- W3202330493 cites W2013013263 @default.
- W3202330493 cites W2017987256 @default.
- W3202330493 cites W2024729467 @default.
- W3202330493 cites W2025543856 @default.
- W3202330493 cites W2033947830 @default.
- W3202330493 cites W2037716995 @default.
- W3202330493 cites W2042276255 @default.
- W3202330493 cites W2048713010 @default.
- W3202330493 cites W2049897179 @default.
- W3202330493 cites W2061099285 @default.
- W3202330493 cites W2068252829 @default.
- W3202330493 cites W2074617510 @default.
- W3202330493 cites W2075557508 @default.
- W3202330493 cites W2078204079 @default.
- W3202330493 cites W2079450984 @default.
- W3202330493 cites W2084009541 @default.
- W3202330493 cites W2089572795 @default.
- W3202330493 cites W2090495290 @default.
- W3202330493 cites W2094426896 @default.
- W3202330493 cites W2095293504 @default.
- W3202330493 cites W2101135654 @default.
- W3202330493 cites W2101571519 @default.
- W3202330493 cites W2101580881 @default.
- W3202330493 cites W2107499714 @default.
- W3202330493 cites W2110620844 @default.
- W3202330493 cites W2112151839 @default.
- W3202330493 cites W2118050239 @default.
- W3202330493 cites W2126838454 @default.
- W3202330493 cites W2127048411 @default.
- W3202330493 cites W2128366083 @default.
- W3202330493 cites W2131181615 @default.
- W3202330493 cites W2131681506 @default.
- W3202330493 cites W2138576397 @default.
- W3202330493 cites W2142029338 @default.
- W3202330493 cites W2143433106 @default.
- W3202330493 cites W2143502460 @default.
- W3202330493 cites W2146509139 @default.
- W3202330493 cites W2146591355 @default.
- W3202330493 cites W2146693559 @default.
- W3202330493 cites W2159929956 @default.
- W3202330493 cites W2160938187 @default.
- W3202330493 cites W2161460637 @default.
- W3202330493 cites W2164928285 @default.
- W3202330493 cites W2164998314 @default.
- W3202330493 cites W2167822639 @default.
- W3202330493 cites W2167845354 @default.
- W3202330493 cites W2168396492 @default.
- W3202330493 cites W2168504072 @default.
- W3202330493 cites W2182367256 @default.
- W3202330493 cites W2412128991 @default.
- W3202330493 cites W2490286622 @default.
- W3202330493 cites W2513567506 @default.
- W3202330493 cites W2514803758 @default.
- W3202330493 cites W2514959782 @default.
- W3202330493 cites W2520835145 @default.
- W3202330493 cites W2537627674 @default.
- W3202330493 cites W2569560213 @default.
- W3202330493 cites W2583273159 @default.
- W3202330493 cites W2602013458 @default.
- W3202330493 cites W2765906219 @default.
- W3202330493 cites W2774446342 @default.
- W3202330493 cites W2802442632 @default.
- W3202330493 cites W2883986152 @default.
- W3202330493 cites W2888573301 @default.
- W3202330493 cites W2897261359 @default.
- W3202330493 cites W2898378706 @default.
- W3202330493 cites W2947522210 @default.