Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202336214> ?p ?o ?g. }
- W3202336214 endingPage "1802" @default.
- W3202336214 startingPage "1802" @default.
- W3202336214 abstract "Radial basis function generated finite differences (RBF-FD) represent the latest discretization approach for solving partial differential equations. Their benefits include high geometric flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to other meshfree methods, typically based upon moving least squares (MLS), the RBF-FD method is able to recover a high order of algebraic accuracy while remaining better conditioned. These features make RBF-FD a promising candidate for kinetic-based fluid simulations such as lattice Boltzmann methods (LB). Pursuant to this approach, we propose a characteristic-based off-lattice Boltzmann method (OLBM) using the strong form of the discrete Boltzmann equation and radial basis function generated finite differences (RBF-FD) for the approximation of spatial derivatives. Decoupling the discretizations of momentum and space enables the use of irregular point cloud, local refinement, and various symmetric velocity sets with higher order isotropy. The accuracy and computational efficiency of the proposed method are studied using the test cases of Taylor–Green vortex flow, lid-driven cavity, and periodic flow over a square array of cylinders. For scattered grids, we find the polyharmonic spline + poly RBF-FD method provides better accuracy compared to MLS. For Cartesian node layouts, the results are the opposite, with MLS offering better accuracy. Altogether, our results suggest that the RBF-FD paradigm can be applied successfully also for kinetic-based fluid simulation with lattice Boltzmann methods." @default.
- W3202336214 created "2021-10-11" @default.
- W3202336214 creator A5026778461 @default.
- W3202336214 creator A5071669372 @default.
- W3202336214 creator A5091360772 @default.
- W3202336214 date "2021-09-28" @default.
- W3202336214 modified "2023-09-27" @default.
- W3202336214 title "A Strong-Form Off-Lattice Boltzmann Method for Irregular Point Clouds" @default.
- W3202336214 cites W1963596278 @default.
- W3202336214 cites W1974465170 @default.
- W3202336214 cites W1978300980 @default.
- W3202336214 cites W1979103260 @default.
- W3202336214 cites W1980178603 @default.
- W3202336214 cites W1981694936 @default.
- W3202336214 cites W1983087692 @default.
- W3202336214 cites W1986598765 @default.
- W3202336214 cites W1988344382 @default.
- W3202336214 cites W1989778094 @default.
- W3202336214 cites W2018515341 @default.
- W3202336214 cites W2018545724 @default.
- W3202336214 cites W2019421148 @default.
- W3202336214 cites W2021041911 @default.
- W3202336214 cites W2028416102 @default.
- W3202336214 cites W2030113609 @default.
- W3202336214 cites W2034296134 @default.
- W3202336214 cites W2042624429 @default.
- W3202336214 cites W2043230583 @default.
- W3202336214 cites W2052862855 @default.
- W3202336214 cites W2065289934 @default.
- W3202336214 cites W2077001925 @default.
- W3202336214 cites W2082006552 @default.
- W3202336214 cites W2086853984 @default.
- W3202336214 cites W2090984065 @default.
- W3202336214 cites W2095470085 @default.
- W3202336214 cites W2111859555 @default.
- W3202336214 cites W2117242079 @default.
- W3202336214 cites W2120900954 @default.
- W3202336214 cites W2122608714 @default.
- W3202336214 cites W2132404030 @default.
- W3202336214 cites W2150432867 @default.
- W3202336214 cites W2153513624 @default.
- W3202336214 cites W2169465044 @default.
- W3202336214 cites W2314159056 @default.
- W3202336214 cites W2403418182 @default.
- W3202336214 cites W2529433302 @default.
- W3202336214 cites W2560552443 @default.
- W3202336214 cites W2565990942 @default.
- W3202336214 cites W2580014036 @default.
- W3202336214 cites W2587267478 @default.
- W3202336214 cites W2606017643 @default.
- W3202336214 cites W2609565072 @default.
- W3202336214 cites W2749178601 @default.
- W3202336214 cites W2754883691 @default.
- W3202336214 cites W2795942116 @default.
- W3202336214 cites W2900106212 @default.
- W3202336214 cites W2904326545 @default.
- W3202336214 cites W2906750618 @default.
- W3202336214 cites W2943712139 @default.
- W3202336214 cites W2966994305 @default.
- W3202336214 cites W2980468049 @default.
- W3202336214 cites W2989985860 @default.
- W3202336214 cites W3103257549 @default.
- W3202336214 cites W3111197091 @default.
- W3202336214 cites W3135488680 @default.
- W3202336214 cites W3174785899 @default.
- W3202336214 cites W4239647010 @default.
- W3202336214 cites W820422164 @default.
- W3202336214 cites W2276961757 @default.
- W3202336214 doi "https://doi.org/10.3390/sym13101802" @default.
- W3202336214 hasPublicationYear "2021" @default.
- W3202336214 type Work @default.
- W3202336214 sameAs 3202336214 @default.
- W3202336214 citedByCount "1" @default.
- W3202336214 countsByYear W32023362142022 @default.
- W3202336214 crossrefType "journal-article" @default.
- W3202336214 hasAuthorship W3202336214A5026778461 @default.
- W3202336214 hasAuthorship W3202336214A5071669372 @default.
- W3202336214 hasAuthorship W3202336214A5091360772 @default.
- W3202336214 hasBestOaLocation W32023362141 @default.
- W3202336214 hasConcept C11413529 @default.
- W3202336214 hasConcept C119857082 @default.
- W3202336214 hasConcept C121332964 @default.
- W3202336214 hasConcept C134306372 @default.
- W3202336214 hasConcept C135628077 @default.
- W3202336214 hasConcept C156890611 @default.
- W3202336214 hasConcept C162835735 @default.
- W3202336214 hasConcept C182748727 @default.
- W3202336214 hasConcept C192499940 @default.
- W3202336214 hasConcept C196558001 @default.
- W3202336214 hasConcept C21821499 @default.
- W3202336214 hasConcept C2780580100 @default.
- W3202336214 hasConcept C28826006 @default.
- W3202336214 hasConcept C33923547 @default.
- W3202336214 hasConcept C35527583 @default.
- W3202336214 hasConcept C41008148 @default.
- W3202336214 hasConcept C50644808 @default.
- W3202336214 hasConcept C57879066 @default.
- W3202336214 hasConcept C5917680 @default.