Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202392927> ?p ?o ?g. }
- W3202392927 endingPage "36400" @default.
- W3202392927 startingPage "36400" @default.
- W3202392927 abstract "Tomographic absorption spectroscopy (TAS) has an advantage over other optical imaging methods for practical combustor diagnostics: optical access is needed in a single plane only, and the access can be limited. However, practical TAS often suffers from limited projection data. In these cases, priors such as smoothness and sparseness can be incorporated to mitigate the ill-posedness of the inversion problem. This work investigates use of dictionary learning (DL) to effectively extract useful a priori information from the existing dataset and incorporate it in the reconstruction process to improve accuracy. We developed two DL algorithms; our numerical results suggest that they can outperform classical Tikhonov reconstruction under moderate noise conditions. Further testing with experimental data indicates that they can effectively suppress reconstruction artifacts and obtain more physically plausible solutions compared with the inverse Radon transform." @default.
- W3202392927 created "2021-10-11" @default.
- W3202392927 creator A5002851782 @default.
- W3202392927 creator A5009016307 @default.
- W3202392927 creator A5039220950 @default.
- W3202392927 creator A5079475995 @default.
- W3202392927 creator A5089978492 @default.
- W3202392927 date "2021-10-20" @default.
- W3202392927 modified "2023-10-17" @default.
- W3202392927 title "Tomographic absorption spectroscopy based on dictionary learning" @default.
- W3202392927 cites W1751758558 @default.
- W3202392927 cites W1980461259 @default.
- W3202392927 cites W1988500921 @default.
- W3202392927 cites W1990919278 @default.
- W3202392927 cites W2016205091 @default.
- W3202392927 cites W2019006560 @default.
- W3202392927 cites W2049633694 @default.
- W3202392927 cites W2050976673 @default.
- W3202392927 cites W2064451467 @default.
- W3202392927 cites W2066043610 @default.
- W3202392927 cites W2066458068 @default.
- W3202392927 cites W2102380305 @default.
- W3202392927 cites W2105464873 @default.
- W3202392927 cites W2110271626 @default.
- W3202392927 cites W2115372743 @default.
- W3202392927 cites W2127230433 @default.
- W3202392927 cites W2153663612 @default.
- W3202392927 cites W2160547390 @default.
- W3202392927 cites W2168668658 @default.
- W3202392927 cites W2441870095 @default.
- W3202392927 cites W2483604105 @default.
- W3202392927 cites W2552037068 @default.
- W3202392927 cites W2581341290 @default.
- W3202392927 cites W2591682036 @default.
- W3202392927 cites W2591776290 @default.
- W3202392927 cites W2594386321 @default.
- W3202392927 cites W2608751429 @default.
- W3202392927 cites W2884298739 @default.
- W3202392927 cites W2930581984 @default.
- W3202392927 cites W2969813287 @default.
- W3202392927 cites W3009845367 @default.
- W3202392927 cites W3044334137 @default.
- W3202392927 cites W3083208205 @default.
- W3202392927 cites W3093026781 @default.
- W3202392927 cites W3102865219 @default.
- W3202392927 cites W3163744527 @default.
- W3202392927 cites W3181806405 @default.
- W3202392927 cites W4292101282 @default.
- W3202392927 cites W2146583368 @default.
- W3202392927 doi "https://doi.org/10.1364/oe.440709" @default.
- W3202392927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34809051" @default.
- W3202392927 hasPublicationYear "2021" @default.
- W3202392927 type Work @default.
- W3202392927 sameAs 3202392927 @default.
- W3202392927 citedByCount "4" @default.
- W3202392927 countsByYear W32023929272022 @default.
- W3202392927 countsByYear W32023929272023 @default.
- W3202392927 crossrefType "journal-article" @default.
- W3202392927 hasAuthorship W3202392927A5002851782 @default.
- W3202392927 hasAuthorship W3202392927A5009016307 @default.
- W3202392927 hasAuthorship W3202392927A5039220950 @default.
- W3202392927 hasAuthorship W3202392927A5079475995 @default.
- W3202392927 hasAuthorship W3202392927A5089978492 @default.
- W3202392927 hasBestOaLocation W32023929271 @default.
- W3202392927 hasConcept C111472728 @default.
- W3202392927 hasConcept C11413529 @default.
- W3202392927 hasConcept C115961682 @default.
- W3202392927 hasConcept C120665830 @default.
- W3202392927 hasConcept C121332964 @default.
- W3202392927 hasConcept C134306372 @default.
- W3202392927 hasConcept C135252773 @default.
- W3202392927 hasConcept C138885662 @default.
- W3202392927 hasConcept C141379421 @default.
- W3202392927 hasConcept C154945302 @default.
- W3202392927 hasConcept C197231052 @default.
- W3202392927 hasConcept C33923547 @default.
- W3202392927 hasConcept C41008148 @default.
- W3202392927 hasConcept C57493831 @default.
- W3202392927 hasConcept C75553542 @default.
- W3202392927 hasConcept C97742081 @default.
- W3202392927 hasConcept C99498987 @default.
- W3202392927 hasConceptScore W3202392927C111472728 @default.
- W3202392927 hasConceptScore W3202392927C11413529 @default.
- W3202392927 hasConceptScore W3202392927C115961682 @default.
- W3202392927 hasConceptScore W3202392927C120665830 @default.
- W3202392927 hasConceptScore W3202392927C121332964 @default.
- W3202392927 hasConceptScore W3202392927C134306372 @default.
- W3202392927 hasConceptScore W3202392927C135252773 @default.
- W3202392927 hasConceptScore W3202392927C138885662 @default.
- W3202392927 hasConceptScore W3202392927C141379421 @default.
- W3202392927 hasConceptScore W3202392927C154945302 @default.
- W3202392927 hasConceptScore W3202392927C197231052 @default.
- W3202392927 hasConceptScore W3202392927C33923547 @default.
- W3202392927 hasConceptScore W3202392927C41008148 @default.
- W3202392927 hasConceptScore W3202392927C57493831 @default.
- W3202392927 hasConceptScore W3202392927C75553542 @default.
- W3202392927 hasConceptScore W3202392927C97742081 @default.
- W3202392927 hasConceptScore W3202392927C99498987 @default.