Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202454856> ?p ?o ?g. }
- W3202454856 endingPage "132341" @default.
- W3202454856 startingPage "132329" @default.
- W3202454856 abstract "Writer identification is the procedure of identifying individuals from handwriting. Writer identification is a common interest in biometric authentication and verification systems, and numerous studies are available for English, Chinese, Arabic, and Persian specific handwriting. This paper introduces a supervised offline Indic script writer identification system that can identify individuals using less than a single page of handwriting. A lightweight Convolutional Neural Network (CNN) architecture fused with non-trainable Gabor filters is used as an identification model that can recognize writers from scarce data. For the experiment, we used BanglaWriting dataset, which is openly available for Bengali writing and writer recognition. Further, we added Devanagari and Telugu datasets for evaluation. The overall evaluation shows that the proposed thresholded Gabor-based CNN architecture performs superior to numerous deep CNN architectures for Indic writer recognition." @default.
- W3202454856 created "2021-10-11" @default.
- W3202454856 creator A5004922965 @default.
- W3202454856 creator A5005221038 @default.
- W3202454856 creator A5025023245 @default.
- W3202454856 creator A5041757523 @default.
- W3202454856 creator A5057444240 @default.
- W3202454856 creator A5071208302 @default.
- W3202454856 date "2021-01-01" @default.
- W3202454856 modified "2023-10-09" @default.
- W3202454856 title "A Thresholded Gabor-CNN Based Writer Identification System for Indic Scripts" @default.
- W3202454856 cites W1594575982 @default.
- W3202454856 cites W1980679618 @default.
- W3202454856 cites W1996550590 @default.
- W3202454856 cites W2036889485 @default.
- W3202454856 cites W2039903200 @default.
- W3202454856 cites W2047791693 @default.
- W3202454856 cites W2050088446 @default.
- W3202454856 cites W2054124380 @default.
- W3202454856 cites W2059093724 @default.
- W3202454856 cites W2098684142 @default.
- W3202454856 cites W2100202779 @default.
- W3202454856 cites W2103762918 @default.
- W3202454856 cites W2108598243 @default.
- W3202454856 cites W2119782389 @default.
- W3202454856 cites W2124312021 @default.
- W3202454856 cites W2132076372 @default.
- W3202454856 cites W2145622129 @default.
- W3202454856 cites W2152737319 @default.
- W3202454856 cites W2160511393 @default.
- W3202454856 cites W2190740400 @default.
- W3202454856 cites W2194775991 @default.
- W3202454856 cites W2250874188 @default.
- W3202454856 cites W2295185764 @default.
- W3202454856 cites W2531409750 @default.
- W3202454856 cites W2572827508 @default.
- W3202454856 cites W2604233003 @default.
- W3202454856 cites W272238909 @default.
- W3202454856 cites W2792729329 @default.
- W3202454856 cites W2810296118 @default.
- W3202454856 cites W2887286714 @default.
- W3202454856 cites W2890688138 @default.
- W3202454856 cites W2891224871 @default.
- W3202454856 cites W2894955875 @default.
- W3202454856 cites W2900595477 @default.
- W3202454856 cites W2903727039 @default.
- W3202454856 cites W2905559671 @default.
- W3202454856 cites W2912359110 @default.
- W3202454856 cites W2922155283 @default.
- W3202454856 cites W2954996726 @default.
- W3202454856 cites W2962858109 @default.
- W3202454856 cites W2963272834 @default.
- W3202454856 cites W2963446712 @default.
- W3202454856 cites W2964292554 @default.
- W3202454856 cites W2985664690 @default.
- W3202454856 cites W2985990156 @default.
- W3202454856 cites W3010709616 @default.
- W3202454856 cites W3011763265 @default.
- W3202454856 cites W3021960567 @default.
- W3202454856 cites W3041133507 @default.
- W3202454856 cites W3112419705 @default.
- W3202454856 cites W4234325207 @default.
- W3202454856 doi "https://doi.org/10.1109/access.2021.3114799" @default.
- W3202454856 hasPublicationYear "2021" @default.
- W3202454856 type Work @default.
- W3202454856 sameAs 3202454856 @default.
- W3202454856 citedByCount "5" @default.
- W3202454856 countsByYear W32024548562022 @default.
- W3202454856 countsByYear W32024548562023 @default.
- W3202454856 crossrefType "journal-article" @default.
- W3202454856 hasAuthorship W3202454856A5004922965 @default.
- W3202454856 hasAuthorship W3202454856A5005221038 @default.
- W3202454856 hasAuthorship W3202454856A5025023245 @default.
- W3202454856 hasAuthorship W3202454856A5041757523 @default.
- W3202454856 hasAuthorship W3202454856A5057444240 @default.
- W3202454856 hasAuthorship W3202454856A5071208302 @default.
- W3202454856 hasBestOaLocation W32024548561 @default.
- W3202454856 hasConcept C111919701 @default.
- W3202454856 hasConcept C115961682 @default.
- W3202454856 hasConcept C116834253 @default.
- W3202454856 hasConcept C153180895 @default.
- W3202454856 hasConcept C154945302 @default.
- W3202454856 hasConcept C19235068 @default.
- W3202454856 hasConcept C204321447 @default.
- W3202454856 hasConcept C2779386606 @default.
- W3202454856 hasConcept C2779883129 @default.
- W3202454856 hasConcept C2780144916 @default.
- W3202454856 hasConcept C28490314 @default.
- W3202454856 hasConcept C2987247673 @default.
- W3202454856 hasConcept C41008148 @default.
- W3202454856 hasConcept C52622490 @default.
- W3202454856 hasConcept C59822182 @default.
- W3202454856 hasConcept C61423126 @default.
- W3202454856 hasConcept C81363708 @default.
- W3202454856 hasConcept C86803240 @default.
- W3202454856 hasConceptScore W3202454856C111919701 @default.
- W3202454856 hasConceptScore W3202454856C115961682 @default.
- W3202454856 hasConceptScore W3202454856C116834253 @default.