Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202462021> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3202462021 abstract "In the lending industry, such as banks or finance companies, investors provide loans to borrowers in exchange for the promise of repayment with interest. This two-way collaboration has many potential risks that need to be assessed. If the borrower repays the loan, then the lender would make a profit from the interest. However, if the borrower fails to repay the loan, then the lender loses money. Therefore, lenders face predicting the risk of a borrower being unable to repay a loan at any step of the credit process. Many financial institutes calculate FICO scores of a customer based on some factors such as the Payment History (35%), Amounts owed (30%), Length of credit history (15%), Credit mix (10%), and New credit (10% of the total point) of the customer, that score qualifies how risk customers are, how repayment ability of the customer. FICO score (Fair Isaac Corporation) is a traditional approach used broadly in finance fields to estimate risks and give a worthy credit amount to the customer. In this study, a new way is to use Artificial intelligence to predict the above problems. It bases on credit information and more personal information of the customers to predict its repayment ability. The data collected from VietCredit Finances used for training several Machine Learning models to determine if the borrower can repay its loan. Some linear, nonlinear models involved are Logistic Regression, Linear Discriminant Analysis, K Nearest Neighbors, Decision Tree, Naive Bayes, Support Vector Machine. The algorithm turning and Boosting and Bagging ensemble methods were also used to determine the best model. As a result, the Gradient Boosting model was the outperform and optimal predictive model (PR-AUC metric = 0.957)." @default.
- W3202462021 created "2021-10-11" @default.
- W3202462021 creator A5024061356 @default.
- W3202462021 creator A5085454479 @default.
- W3202462021 date "2021-01-01" @default.
- W3202462021 modified "2023-10-18" @default.
- W3202462021 title "Loan Default Prediction Using Artificial Intelligence for the Borrow – Lend Collaboration" @default.
- W3202462021 cites W2529306290 @default.
- W3202462021 cites W2606916050 @default.
- W3202462021 cites W2793660455 @default.
- W3202462021 cites W2806371494 @default.
- W3202462021 cites W2810984894 @default.
- W3202462021 cites W2901448553 @default.
- W3202462021 cites W2913377715 @default.
- W3202462021 cites W2952638716 @default.
- W3202462021 cites W2963186039 @default.
- W3202462021 cites W2969657600 @default.
- W3202462021 cites W2972955753 @default.
- W3202462021 cites W2980139569 @default.
- W3202462021 cites W2998729480 @default.
- W3202462021 cites W3007963259 @default.
- W3202462021 cites W3027914383 @default.
- W3202462021 cites W3047560809 @default.
- W3202462021 doi "https://doi.org/10.1007/978-3-030-88207-5_26" @default.
- W3202462021 hasPublicationYear "2021" @default.
- W3202462021 type Work @default.
- W3202462021 sameAs 3202462021 @default.
- W3202462021 citedByCount "1" @default.
- W3202462021 countsByYear W32024620212023 @default.
- W3202462021 crossrefType "book-chapter" @default.
- W3202462021 hasAuthorship W3202462021A5024061356 @default.
- W3202462021 hasAuthorship W3202462021A5085454479 @default.
- W3202462021 hasConcept C10138342 @default.
- W3202462021 hasConcept C12267149 @default.
- W3202462021 hasConcept C144133560 @default.
- W3202462021 hasConcept C145097563 @default.
- W3202462021 hasConcept C154945302 @default.
- W3202462021 hasConcept C162118730 @default.
- W3202462021 hasConcept C178350159 @default.
- W3202462021 hasConcept C2777138686 @default.
- W3202462021 hasConcept C2777764128 @default.
- W3202462021 hasConcept C41008148 @default.
- W3202462021 hasConcept C46686674 @default.
- W3202462021 hasConcept C52001869 @default.
- W3202462021 hasConcept C68842666 @default.
- W3202462021 hasConcept C84525736 @default.
- W3202462021 hasConceptScore W3202462021C10138342 @default.
- W3202462021 hasConceptScore W3202462021C12267149 @default.
- W3202462021 hasConceptScore W3202462021C144133560 @default.
- W3202462021 hasConceptScore W3202462021C145097563 @default.
- W3202462021 hasConceptScore W3202462021C154945302 @default.
- W3202462021 hasConceptScore W3202462021C162118730 @default.
- W3202462021 hasConceptScore W3202462021C178350159 @default.
- W3202462021 hasConceptScore W3202462021C2777138686 @default.
- W3202462021 hasConceptScore W3202462021C2777764128 @default.
- W3202462021 hasConceptScore W3202462021C41008148 @default.
- W3202462021 hasConceptScore W3202462021C46686674 @default.
- W3202462021 hasConceptScore W3202462021C52001869 @default.
- W3202462021 hasConceptScore W3202462021C68842666 @default.
- W3202462021 hasConceptScore W3202462021C84525736 @default.
- W3202462021 hasLocation W32024620211 @default.
- W3202462021 hasOpenAccess W3202462021 @default.
- W3202462021 hasPrimaryLocation W32024620211 @default.
- W3202462021 hasRelatedWork W10042301 @default.
- W3202462021 hasRelatedWork W11297145 @default.
- W3202462021 hasRelatedWork W13451536 @default.
- W3202462021 hasRelatedWork W14214433 @default.
- W3202462021 hasRelatedWork W5683678 @default.
- W3202462021 hasRelatedWork W621929 @default.
- W3202462021 hasRelatedWork W6552940 @default.
- W3202462021 hasRelatedWork W6747541 @default.
- W3202462021 hasRelatedWork W7465187 @default.
- W3202462021 hasRelatedWork W8978006 @default.
- W3202462021 isParatext "false" @default.
- W3202462021 isRetracted "false" @default.
- W3202462021 magId "3202462021" @default.
- W3202462021 workType "book-chapter" @default.