Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202468840> ?p ?o ?g. }
- W3202468840 endingPage "104925" @default.
- W3202468840 startingPage "104925" @default.
- W3202468840 abstract "Mandibular reconstruction is a very complex surgery that demands removing the tumor, which is followed by reconstruction of the defective mandible. Accurate segmentation of the mandible plays an important role in its preoperative planning. However, there are many segmentation challenges including the connected boundaries of upper and lower teeth, blurred condyle edges, metal artifact interference, and different shapes of the mandibles with tumor invasion (MTI). Those manual or semi-automatic segmentation methods commonly used in clinical practice are time-consuming and have poor effects. The automatic segmentation methods are mainly developed for the mandible without tumor invasion (Non-MTI) rather than MTI and have problems such as under-segmentation. Given these problems, this paper proposed a 3D automatic segmentation network of the mandible with a combination of multiple convolutional modules and edge supervision. Firstly, the squeeze-and-excitation residual module is used for feature optimization to make the network focused more on the mandibular segmentation region. Secondly, the multi atrous convolution cascade module is adapted to implement a multi-scale feature search to extract more detailed features. Considering that most mandibular segmentation networks ignore the boundary information, the loss function combining region loss and edge loss is applied to further improve the segmentation performance. The final experiment shows that the proposed network can segment Non-MTI and MTI quickly and automatically with an average segmentation time of 7.41s for a CT scan. In the meantime, it also has a good segmentation accuracy. For Non-MTI segmentation, the dice coefficient (Dice) reaches 97.98 ± 0.36%, average surface distance (ASD) reaches 0.061 ± 0.016 mm, and 95% Hausdorff distance (95HD) reaches 0.484 ± 0.027 mm. For Non-MTI segmentation, the Dice reaches 96.90 ± 1.59%, ASD reaches 0.162 ± 0.107 mm, and 95HD reaches 1.161 ± 1.034 mm. Compared with other methods, the proposed method has better segmentation performance, effectively improving segmentation accuracy and reducing under-segmentation. It can greatly improve doctor's segmentation efficiency and will have a promising application prospect in mandibular reconstruction surgery in the future." @default.
- W3202468840 created "2021-10-11" @default.
- W3202468840 creator A5000593851 @default.
- W3202468840 creator A5018304475 @default.
- W3202468840 creator A5021571562 @default.
- W3202468840 creator A5032148962 @default.
- W3202468840 creator A5045934514 @default.
- W3202468840 creator A5091798734 @default.
- W3202468840 date "2021-11-01" @default.
- W3202468840 modified "2023-10-16" @default.
- W3202468840 title "A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction" @default.
- W3202468840 cites W2075304274 @default.
- W3202468840 cites W2254698808 @default.
- W3202468840 cites W2540093864 @default.
- W3202468840 cites W2560725027 @default.
- W3202468840 cites W2593013519 @default.
- W3202468840 cites W2742039663 @default.
- W3202468840 cites W2753229233 @default.
- W3202468840 cites W2759639496 @default.
- W3202468840 cites W2795266055 @default.
- W3202468840 cites W2799274174 @default.
- W3202468840 cites W2802322159 @default.
- W3202468840 cites W2809352434 @default.
- W3202468840 cites W2883507791 @default.
- W3202468840 cites W2884561390 @default.
- W3202468840 cites W2888529080 @default.
- W3202468840 cites W2888667538 @default.
- W3202468840 cites W2896145365 @default.
- W3202468840 cites W2900237898 @default.
- W3202468840 cites W2956095506 @default.
- W3202468840 cites W2963420686 @default.
- W3202468840 cites W2983323220 @default.
- W3202468840 cites W2990306149 @default.
- W3202468840 cites W2991002626 @default.
- W3202468840 cites W3006905011 @default.
- W3202468840 cites W3008512199 @default.
- W3202468840 cites W3037663054 @default.
- W3202468840 cites W3043509725 @default.
- W3202468840 cites W3047191684 @default.
- W3202468840 cites W3078786834 @default.
- W3202468840 cites W3082335549 @default.
- W3202468840 cites W3093690432 @default.
- W3202468840 cites W3125883543 @default.
- W3202468840 cites W3185171819 @default.
- W3202468840 cites W4238100585 @default.
- W3202468840 cites W4238558178 @default.
- W3202468840 doi "https://doi.org/10.1016/j.compbiomed.2021.104925" @default.
- W3202468840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34656866" @default.
- W3202468840 hasPublicationYear "2021" @default.
- W3202468840 type Work @default.
- W3202468840 sameAs 3202468840 @default.
- W3202468840 citedByCount "9" @default.
- W3202468840 countsByYear W32024688402022 @default.
- W3202468840 countsByYear W32024688402023 @default.
- W3202468840 crossrefType "journal-article" @default.
- W3202468840 hasAuthorship W3202468840A5000593851 @default.
- W3202468840 hasAuthorship W3202468840A5018304475 @default.
- W3202468840 hasAuthorship W3202468840A5021571562 @default.
- W3202468840 hasAuthorship W3202468840A5032148962 @default.
- W3202468840 hasAuthorship W3202468840A5045934514 @default.
- W3202468840 hasAuthorship W3202468840A5091798734 @default.
- W3202468840 hasConcept C124504099 @default.
- W3202468840 hasConcept C126838900 @default.
- W3202468840 hasConcept C138885662 @default.
- W3202468840 hasConcept C153180895 @default.
- W3202468840 hasConcept C154945302 @default.
- W3202468840 hasConcept C163892561 @default.
- W3202468840 hasConcept C2776401178 @default.
- W3202468840 hasConcept C2779370443 @default.
- W3202468840 hasConcept C31972630 @default.
- W3202468840 hasConcept C41008148 @default.
- W3202468840 hasConcept C41895202 @default.
- W3202468840 hasConcept C65885262 @default.
- W3202468840 hasConcept C71924100 @default.
- W3202468840 hasConcept C89600930 @default.
- W3202468840 hasConceptScore W3202468840C124504099 @default.
- W3202468840 hasConceptScore W3202468840C126838900 @default.
- W3202468840 hasConceptScore W3202468840C138885662 @default.
- W3202468840 hasConceptScore W3202468840C153180895 @default.
- W3202468840 hasConceptScore W3202468840C154945302 @default.
- W3202468840 hasConceptScore W3202468840C163892561 @default.
- W3202468840 hasConceptScore W3202468840C2776401178 @default.
- W3202468840 hasConceptScore W3202468840C2779370443 @default.
- W3202468840 hasConceptScore W3202468840C31972630 @default.
- W3202468840 hasConceptScore W3202468840C41008148 @default.
- W3202468840 hasConceptScore W3202468840C41895202 @default.
- W3202468840 hasConceptScore W3202468840C65885262 @default.
- W3202468840 hasConceptScore W3202468840C71924100 @default.
- W3202468840 hasConceptScore W3202468840C89600930 @default.
- W3202468840 hasLocation W32024688401 @default.
- W3202468840 hasLocation W32024688402 @default.
- W3202468840 hasOpenAccess W3202468840 @default.
- W3202468840 hasPrimaryLocation W32024688401 @default.
- W3202468840 hasRelatedWork W1507266234 @default.
- W3202468840 hasRelatedWork W1669643531 @default.
- W3202468840 hasRelatedWork W2069711651 @default.
- W3202468840 hasRelatedWork W2117664411 @default.
- W3202468840 hasRelatedWork W2117933325 @default.