Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202496989> ?p ?o ?g. }
- W3202496989 abstract "Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli.Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated ‘switches off’ the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this ‘anticipatory’ information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons ‘foresee’ that food or water will be consumed." @default.
- W3202496989 created "2021-10-11" @default.
- W3202496989 creator A5021793256 @default.
- W3202496989 creator A5022180097 @default.
- W3202496989 creator A5024782501 @default.
- W3202496989 creator A5035147863 @default.
- W3202496989 creator A5090696943 @default.
- W3202496989 date "2021-09-29" @default.
- W3202496989 modified "2023-10-18" @default.
- W3202496989 title "Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality" @default.
- W3202496989 cites W169505204 @default.
- W3202496989 cites W1900012746 @default.
- W3202496989 cites W1964028898 @default.
- W3202496989 cites W1971359921 @default.
- W3202496989 cites W1971716149 @default.
- W3202496989 cites W1973886932 @default.
- W3202496989 cites W1976296204 @default.
- W3202496989 cites W1982448315 @default.
- W3202496989 cites W1999511126 @default.
- W3202496989 cites W2005252912 @default.
- W3202496989 cites W2006048564 @default.
- W3202496989 cites W2012431527 @default.
- W3202496989 cites W2018779154 @default.
- W3202496989 cites W2021874474 @default.
- W3202496989 cites W2029048820 @default.
- W3202496989 cites W2032668395 @default.
- W3202496989 cites W2050227464 @default.
- W3202496989 cites W2050752504 @default.
- W3202496989 cites W2051981831 @default.
- W3202496989 cites W2056084493 @default.
- W3202496989 cites W2061072142 @default.
- W3202496989 cites W2061895476 @default.
- W3202496989 cites W2063366337 @default.
- W3202496989 cites W2063393330 @default.
- W3202496989 cites W2069072617 @default.
- W3202496989 cites W2074535857 @default.
- W3202496989 cites W2080595764 @default.
- W3202496989 cites W2088288312 @default.
- W3202496989 cites W2090616000 @default.
- W3202496989 cites W2092614422 @default.
- W3202496989 cites W2094576507 @default.
- W3202496989 cites W2100762371 @default.
- W3202496989 cites W2101995469 @default.
- W3202496989 cites W2143195083 @default.
- W3202496989 cites W2172771060 @default.
- W3202496989 cites W2174424400 @default.
- W3202496989 cites W2221827473 @default.
- W3202496989 cites W2260136992 @default.
- W3202496989 cites W2270493538 @default.
- W3202496989 cites W2277630134 @default.
- W3202496989 cites W2339432692 @default.
- W3202496989 cites W2411800611 @default.
- W3202496989 cites W2480035352 @default.
- W3202496989 cites W2494253658 @default.
- W3202496989 cites W2521697301 @default.
- W3202496989 cites W2555705223 @default.
- W3202496989 cites W2563689244 @default.
- W3202496989 cites W2564293300 @default.
- W3202496989 cites W2586421092 @default.
- W3202496989 cites W2626942755 @default.
- W3202496989 cites W2750420823 @default.
- W3202496989 cites W2754841759 @default.
- W3202496989 cites W2767567136 @default.
- W3202496989 cites W2768029427 @default.
- W3202496989 cites W2776864790 @default.
- W3202496989 cites W2793800590 @default.
- W3202496989 cites W2797465087 @default.
- W3202496989 cites W2924145382 @default.
- W3202496989 cites W2947979545 @default.
- W3202496989 cites W2969070990 @default.
- W3202496989 cites W2972870117 @default.
- W3202496989 cites W3000715106 @default.
- W3202496989 cites W3000732300 @default.
- W3202496989 cites W3015675487 @default.
- W3202496989 cites W3093167159 @default.
- W3202496989 cites W3104117493 @default.
- W3202496989 doi "https://doi.org/10.7554/elife.66609" @default.
- W3202496989 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8601670" @default.
- W3202496989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34585668" @default.
- W3202496989 hasPublicationYear "2021" @default.
- W3202496989 type Work @default.
- W3202496989 sameAs 3202496989 @default.
- W3202496989 citedByCount "6" @default.
- W3202496989 countsByYear W32024969892021 @default.
- W3202496989 countsByYear W32024969892022 @default.
- W3202496989 countsByYear W32024969892023 @default.
- W3202496989 crossrefType "journal-article" @default.
- W3202496989 hasAuthorship W3202496989A5021793256 @default.
- W3202496989 hasAuthorship W3202496989A5022180097 @default.
- W3202496989 hasAuthorship W3202496989A5024782501 @default.
- W3202496989 hasAuthorship W3202496989A5035147863 @default.
- W3202496989 hasAuthorship W3202496989A5090696943 @default.
- W3202496989 hasBestOaLocation W32024969891 @default.
- W3202496989 hasConcept C126322002 @default.
- W3202496989 hasConcept C129513315 @default.
- W3202496989 hasConcept C133944241 @default.
- W3202496989 hasConcept C134018914 @default.
- W3202496989 hasConcept C169760540 @default.
- W3202496989 hasConcept C185592680 @default.
- W3202496989 hasConcept C18903297 @default.