Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202500181> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3202500181 endingPage "449" @default.
- W3202500181 startingPage "425" @default.
- W3202500181 abstract "Abstract Prediction based on a single linear regression model is one of the most common way in various field of studies. It enables us to understand the structure of data, but might not be suitable to express the data whose structure is complex. To express the structure of data more accurately, we make assumption that the data can be divided in clusters, and has a linear regression model in each cluster. In this case, we can assume that each explanatory variable has their own role; explaining the assignment to the clusters, explaining the regression to the target variable, or being both of them. Introducing probabilistic structure to the data generating process, we derive the optimal prediction under Bayes criterion and the algorithm which calculates it sub-optimally with variational inference method. One of the advantages of our algorithm is that it automatically weights the probabilities of being each number of clusters in the process of the algorithm, therefore it solves the concern about selection of the number of clusters. Some experiments are performed on both synthetic and real data to demonstrate the above advantages and to discover some behaviors and tendencies of the algorithm." @default.
- W3202500181 created "2021-10-11" @default.
- W3202500181 creator A5001323780 @default.
- W3202500181 creator A5032142245 @default.
- W3202500181 creator A5039839744 @default.
- W3202500181 creator A5044096139 @default.
- W3202500181 creator A5082105955 @default.
- W3202500181 date "2021-09-01" @default.
- W3202500181 modified "2023-10-16" @default.
- W3202500181 title "Cluster’s Number Free Bayes Prediction of General Framework on Mixture of Regression Models" @default.
- W3202500181 cites W1480168147 @default.
- W3202500181 cites W1988520084 @default.
- W3202500181 cites W2074066709 @default.
- W3202500181 cites W2112136981 @default.
- W3202500181 cites W2150884987 @default.
- W3202500181 cites W2546486681 @default.
- W3202500181 cites W2770103856 @default.
- W3202500181 cites W2911964244 @default.
- W3202500181 cites W2921486051 @default.
- W3202500181 cites W2989991760 @default.
- W3202500181 cites W3099274094 @default.
- W3202500181 cites W1965101143 @default.
- W3202500181 doi "https://doi.org/10.1007/s44199-021-00001-5" @default.
- W3202500181 hasPublicationYear "2021" @default.
- W3202500181 type Work @default.
- W3202500181 sameAs 3202500181 @default.
- W3202500181 citedByCount "0" @default.
- W3202500181 crossrefType "journal-article" @default.
- W3202500181 hasAuthorship W3202500181A5001323780 @default.
- W3202500181 hasAuthorship W3202500181A5032142245 @default.
- W3202500181 hasAuthorship W3202500181A5039839744 @default.
- W3202500181 hasAuthorship W3202500181A5044096139 @default.
- W3202500181 hasAuthorship W3202500181A5082105955 @default.
- W3202500181 hasBestOaLocation W32025001811 @default.
- W3202500181 hasConcept C105795698 @default.
- W3202500181 hasConcept C107673813 @default.
- W3202500181 hasConcept C11413529 @default.
- W3202500181 hasConcept C124101348 @default.
- W3202500181 hasConcept C134306372 @default.
- W3202500181 hasConcept C152877465 @default.
- W3202500181 hasConcept C154945302 @default.
- W3202500181 hasConcept C164866538 @default.
- W3202500181 hasConcept C182365436 @default.
- W3202500181 hasConcept C199360897 @default.
- W3202500181 hasConcept C207201462 @default.
- W3202500181 hasConcept C2776214188 @default.
- W3202500181 hasConcept C33923547 @default.
- W3202500181 hasConcept C41008148 @default.
- W3202500181 hasConcept C48921125 @default.
- W3202500181 hasConcept C49937458 @default.
- W3202500181 hasConcept C93959086 @default.
- W3202500181 hasConceptScore W3202500181C105795698 @default.
- W3202500181 hasConceptScore W3202500181C107673813 @default.
- W3202500181 hasConceptScore W3202500181C11413529 @default.
- W3202500181 hasConceptScore W3202500181C124101348 @default.
- W3202500181 hasConceptScore W3202500181C134306372 @default.
- W3202500181 hasConceptScore W3202500181C152877465 @default.
- W3202500181 hasConceptScore W3202500181C154945302 @default.
- W3202500181 hasConceptScore W3202500181C164866538 @default.
- W3202500181 hasConceptScore W3202500181C182365436 @default.
- W3202500181 hasConceptScore W3202500181C199360897 @default.
- W3202500181 hasConceptScore W3202500181C207201462 @default.
- W3202500181 hasConceptScore W3202500181C2776214188 @default.
- W3202500181 hasConceptScore W3202500181C33923547 @default.
- W3202500181 hasConceptScore W3202500181C41008148 @default.
- W3202500181 hasConceptScore W3202500181C48921125 @default.
- W3202500181 hasConceptScore W3202500181C49937458 @default.
- W3202500181 hasConceptScore W3202500181C93959086 @default.
- W3202500181 hasFunder F4320334764 @default.
- W3202500181 hasIssue "3" @default.
- W3202500181 hasLocation W32025001811 @default.
- W3202500181 hasOpenAccess W3202500181 @default.
- W3202500181 hasPrimaryLocation W32025001811 @default.
- W3202500181 hasRelatedWork W2100645049 @default.
- W3202500181 hasRelatedWork W2352101619 @default.
- W3202500181 hasRelatedWork W2360137133 @default.
- W3202500181 hasRelatedWork W2789413038 @default.
- W3202500181 hasRelatedWork W2895482905 @default.
- W3202500181 hasRelatedWork W3172597338 @default.
- W3202500181 hasRelatedWork W4231471330 @default.
- W3202500181 hasRelatedWork W4287845932 @default.
- W3202500181 hasRelatedWork W4289436932 @default.
- W3202500181 hasRelatedWork W4310036518 @default.
- W3202500181 hasVolume "20" @default.
- W3202500181 isParatext "false" @default.
- W3202500181 isRetracted "false" @default.
- W3202500181 magId "3202500181" @default.
- W3202500181 workType "article" @default.