Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202502014> ?p ?o ?g. }
- W3202502014 endingPage "10821" @default.
- W3202502014 startingPage "10821" @default.
- W3202502014 abstract "In silico approaches have been studied intensively to assess the toxicological risk of various chemical compounds as alternatives to traditional in vivo animal tests. Among these approaches, quantitative structure-activity relationship (QSAR) analysis has the advantages that it is able to construct models to predict the biological properties of chemicals based on structural information. Previously, we reported a deep learning (DL) algorithm-based QSAR approach called DeepSnap-DL for high-performance prediction modeling of the agonist and antagonist activity of key molecules in molecular initiating events in toxicological pathways using optimized hyperparameters. In the present study, to achieve high throughput in the DeepSnap-DL system-which consists of the preparation of three-dimensional molecular structures of chemical compounds, the generation of snapshot images from the three-dimensional chemical structures, DL, and statistical calculations-we propose an improved DeepSnap-DL approach. Using this improved system, we constructed 59 prediction models for the agonist and antagonist activity of key molecules in the Tox21 10K library. The results indicate that modeling of the agonist and antagonist activity with high prediction performance and high throughput can be achieved by optimizing suitable parameters in the improved DeepSnap-DL system." @default.
- W3202502014 created "2021-10-11" @default.
- W3202502014 creator A5000664500 @default.
- W3202502014 creator A5031513542 @default.
- W3202502014 creator A5057190375 @default.
- W3202502014 creator A5072277012 @default.
- W3202502014 creator A5073019709 @default.
- W3202502014 creator A5086014335 @default.
- W3202502014 date "2021-10-06" @default.
- W3202502014 modified "2023-10-16" @default.
- W3202502014 title "Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure–Activity Relationship System" @default.
- W3202502014 cites W2276859037 @default.
- W3202502014 cites W2888959675 @default.
- W3202502014 cites W2899980873 @default.
- W3202502014 cites W2911107164 @default.
- W3202502014 cites W2915275782 @default.
- W3202502014 cites W2920702708 @default.
- W3202502014 cites W2920825962 @default.
- W3202502014 cites W2956850742 @default.
- W3202502014 cites W2966109107 @default.
- W3202502014 cites W2970686841 @default.
- W3202502014 cites W2976294194 @default.
- W3202502014 cites W2985331920 @default.
- W3202502014 cites W2995345309 @default.
- W3202502014 cites W3002778979 @default.
- W3202502014 cites W3006781240 @default.
- W3202502014 cites W3008264426 @default.
- W3202502014 cites W3011832258 @default.
- W3202502014 cites W3029333120 @default.
- W3202502014 cites W3031451715 @default.
- W3202502014 cites W3034798954 @default.
- W3202502014 cites W3083024963 @default.
- W3202502014 cites W3097280976 @default.
- W3202502014 cites W3099138075 @default.
- W3202502014 cites W3105357530 @default.
- W3202502014 cites W3133920567 @default.
- W3202502014 cites W3136156118 @default.
- W3202502014 cites W3137459879 @default.
- W3202502014 cites W3146401251 @default.
- W3202502014 cites W3154492312 @default.
- W3202502014 cites W3155425226 @default.
- W3202502014 cites W3156769201 @default.
- W3202502014 cites W3157442619 @default.
- W3202502014 cites W3159151987 @default.
- W3202502014 cites W3165163721 @default.
- W3202502014 cites W3171050817 @default.
- W3202502014 cites W4210257598 @default.
- W3202502014 doi "https://doi.org/10.3390/ijms221910821" @default.
- W3202502014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8509615" @default.
- W3202502014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34639159" @default.
- W3202502014 hasPublicationYear "2021" @default.
- W3202502014 type Work @default.
- W3202502014 sameAs 3202502014 @default.
- W3202502014 citedByCount "6" @default.
- W3202502014 countsByYear W32025020142022 @default.
- W3202502014 countsByYear W32025020142023 @default.
- W3202502014 crossrefType "journal-article" @default.
- W3202502014 hasAuthorship W3202502014A5000664500 @default.
- W3202502014 hasAuthorship W3202502014A5031513542 @default.
- W3202502014 hasAuthorship W3202502014A5057190375 @default.
- W3202502014 hasAuthorship W3202502014A5072277012 @default.
- W3202502014 hasAuthorship W3202502014A5073019709 @default.
- W3202502014 hasAuthorship W3202502014A5086014335 @default.
- W3202502014 hasBestOaLocation W32025020141 @default.
- W3202502014 hasConcept C104317684 @default.
- W3202502014 hasConcept C119857082 @default.
- W3202502014 hasConcept C154945302 @default.
- W3202502014 hasConcept C164126121 @default.
- W3202502014 hasConcept C170493617 @default.
- W3202502014 hasConcept C185592680 @default.
- W3202502014 hasConcept C186060115 @default.
- W3202502014 hasConcept C2775905019 @default.
- W3202502014 hasConcept C2778938600 @default.
- W3202502014 hasConcept C41008148 @default.
- W3202502014 hasConcept C55493867 @default.
- W3202502014 hasConcept C70721500 @default.
- W3202502014 hasConcept C86803240 @default.
- W3202502014 hasConceptScore W3202502014C104317684 @default.
- W3202502014 hasConceptScore W3202502014C119857082 @default.
- W3202502014 hasConceptScore W3202502014C154945302 @default.
- W3202502014 hasConceptScore W3202502014C164126121 @default.
- W3202502014 hasConceptScore W3202502014C170493617 @default.
- W3202502014 hasConceptScore W3202502014C185592680 @default.
- W3202502014 hasConceptScore W3202502014C186060115 @default.
- W3202502014 hasConceptScore W3202502014C2775905019 @default.
- W3202502014 hasConceptScore W3202502014C2778938600 @default.
- W3202502014 hasConceptScore W3202502014C41008148 @default.
- W3202502014 hasConceptScore W3202502014C55493867 @default.
- W3202502014 hasConceptScore W3202502014C70721500 @default.
- W3202502014 hasConceptScore W3202502014C86803240 @default.
- W3202502014 hasFunder F4320321679 @default.
- W3202502014 hasIssue "19" @default.
- W3202502014 hasLocation W32025020141 @default.
- W3202502014 hasLocation W32025020142 @default.
- W3202502014 hasLocation W32025020143 @default.
- W3202502014 hasOpenAccess W3202502014 @default.
- W3202502014 hasPrimaryLocation W32025020141 @default.
- W3202502014 hasRelatedWork W1863316385 @default.