Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202510180> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3202510180 endingPage "303" @default.
- W3202510180 startingPage "293" @default.
- W3202510180 abstract "As deep learning (DL) is evolving rapidly, implementing the knowledge of DL into various fields of human life and the effective usage of existing data insights are becoming crucial tasks for a majority of DL models. We are proposing to ensemble maximum prediction probabilities of different epochs and the epoch which achieved the highest accuracy for classification problems. Our suggestion contributes to the improvement of DL models using the pre-trained and skipped results from epochs. The maximum prediction probability ensemble of epochs increases the prediction space of the entire model if the intersection of prediction scope of any epoch is smaller than the one that has the biggest prediction scope. Using only the best epoch’s prediction probabilities for classification cannot use the other epochs’ knowledge. To avoid bias in this research, a simple CNN architecture with batch normalization and dropout was used as a base model. By ensembling only maximum prediction probabilities of different epochs, we managed to use 50% of the lost data insight from the epochs, thereby increasing the total accuracy by 4–5%." @default.
- W3202510180 created "2021-10-11" @default.
- W3202510180 creator A5032265881 @default.
- W3202510180 creator A5055844916 @default.
- W3202510180 creator A5091106383 @default.
- W3202510180 date "2021-01-01" @default.
- W3202510180 modified "2023-10-02" @default.
- W3202510180 title "EMaxPPE: Epoch’s Maximum Prediction Probability Ensemble Method for Deep Learning Classification Models" @default.
- W3202510180 cites W1968023063 @default.
- W3202510180 cites W2585528949 @default.
- W3202510180 cites W2622999711 @default.
- W3202510180 cites W2755012395 @default.
- W3202510180 cites W2789758093 @default.
- W3202510180 cites W2897113013 @default.
- W3202510180 cites W2902240328 @default.
- W3202510180 cites W2945989246 @default.
- W3202510180 cites W2980444207 @default.
- W3202510180 cites W3095676075 @default.
- W3202510180 cites W3096746833 @default.
- W3202510180 cites W3122893890 @default.
- W3202510180 cites W3158264953 @default.
- W3202510180 doi "https://doi.org/10.1007/978-3-030-88113-9_23" @default.
- W3202510180 hasPublicationYear "2021" @default.
- W3202510180 type Work @default.
- W3202510180 sameAs 3202510180 @default.
- W3202510180 citedByCount "2" @default.
- W3202510180 countsByYear W32025101802023 @default.
- W3202510180 crossrefType "book-chapter" @default.
- W3202510180 hasAuthorship W3202510180A5032265881 @default.
- W3202510180 hasAuthorship W3202510180A5055844916 @default.
- W3202510180 hasAuthorship W3202510180A5091106383 @default.
- W3202510180 hasConcept C119857082 @default.
- W3202510180 hasConcept C119898033 @default.
- W3202510180 hasConcept C136886441 @default.
- W3202510180 hasConcept C144024400 @default.
- W3202510180 hasConcept C150846664 @default.
- W3202510180 hasConcept C154945302 @default.
- W3202510180 hasConcept C19165224 @default.
- W3202510180 hasConcept C199360897 @default.
- W3202510180 hasConcept C2776145597 @default.
- W3202510180 hasConcept C2778012447 @default.
- W3202510180 hasConcept C2780317896 @default.
- W3202510180 hasConcept C31972630 @default.
- W3202510180 hasConcept C41008148 @default.
- W3202510180 hasConcept C45942800 @default.
- W3202510180 hasConceptScore W3202510180C119857082 @default.
- W3202510180 hasConceptScore W3202510180C119898033 @default.
- W3202510180 hasConceptScore W3202510180C136886441 @default.
- W3202510180 hasConceptScore W3202510180C144024400 @default.
- W3202510180 hasConceptScore W3202510180C150846664 @default.
- W3202510180 hasConceptScore W3202510180C154945302 @default.
- W3202510180 hasConceptScore W3202510180C19165224 @default.
- W3202510180 hasConceptScore W3202510180C199360897 @default.
- W3202510180 hasConceptScore W3202510180C2776145597 @default.
- W3202510180 hasConceptScore W3202510180C2778012447 @default.
- W3202510180 hasConceptScore W3202510180C2780317896 @default.
- W3202510180 hasConceptScore W3202510180C31972630 @default.
- W3202510180 hasConceptScore W3202510180C41008148 @default.
- W3202510180 hasConceptScore W3202510180C45942800 @default.
- W3202510180 hasLocation W32025101801 @default.
- W3202510180 hasOpenAccess W3202510180 @default.
- W3202510180 hasPrimaryLocation W32025101801 @default.
- W3202510180 hasRelatedWork W2810053714 @default.
- W3202510180 hasRelatedWork W3124390867 @default.
- W3202510180 hasRelatedWork W3136979370 @default.
- W3202510180 hasRelatedWork W4281560664 @default.
- W3202510180 hasRelatedWork W4281757034 @default.
- W3202510180 hasRelatedWork W4285046548 @default.
- W3202510180 hasRelatedWork W4285741730 @default.
- W3202510180 hasRelatedWork W4311847748 @default.
- W3202510180 hasRelatedWork W4313488044 @default.
- W3202510180 hasRelatedWork W3214927170 @default.
- W3202510180 isParatext "false" @default.
- W3202510180 isRetracted "false" @default.
- W3202510180 magId "3202510180" @default.
- W3202510180 workType "book-chapter" @default.