Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202542180> ?p ?o ?g. }
- W3202542180 endingPage "108090" @default.
- W3202542180 startingPage "108090" @default.
- W3202542180 abstract "Unreliable transit services can negatively impact transit ridership and discourage passengers from regularly choosing public transport. As the most important content of bus service reliability, accurate bus arrival prediction can improve travel efficiency for enabling a reliable and convenient transportation system. Accordingly, this paper proposes a novel deep learning method, i.e. variational mode decomposition long short-term memory (VMD-LSTM), for bus travel speed prediction in urban traffic networks using a forecast of bus arrival information on variable time horizons. The method uses the temporal and spatial patterns of the average bus speed series. The results show that the VMD-LSTM model outperforms other models on forecasting bus link speed series in future time intervals, whereas the artificial neural network model achieves the worst prediction. In conclusion, the VMD-LSTM method can detect irregular peaks of transit samples from a series of temporal or spatial variations and performs better on major and auxiliary corridors." @default.
- W3202542180 created "2021-10-11" @default.
- W3202542180 creator A5020451053 @default.
- W3202542180 creator A5032489133 @default.
- W3202542180 creator A5045751633 @default.
- W3202542180 creator A5071057752 @default.
- W3202542180 creator A5072835142 @default.
- W3202542180 creator A5076218130 @default.
- W3202542180 creator A5076297227 @default.
- W3202542180 date "2022-01-01" @default.
- W3202542180 modified "2023-10-16" @default.
- W3202542180 title "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method" @default.
- W3202542180 cites W1772240793 @default.
- W3202542180 cites W1976223062 @default.
- W3202542180 cites W2000982976 @default.
- W3202542180 cites W2009527558 @default.
- W3202542180 cites W2015728112 @default.
- W3202542180 cites W2026184121 @default.
- W3202542180 cites W2026464360 @default.
- W3202542180 cites W2106100548 @default.
- W3202542180 cites W2144830515 @default.
- W3202542180 cites W2401054706 @default.
- W3202542180 cites W2530879108 @default.
- W3202542180 cites W2553526105 @default.
- W3202542180 cites W2560171794 @default.
- W3202542180 cites W2583806860 @default.
- W3202542180 cites W2605995093 @default.
- W3202542180 cites W2759459495 @default.
- W3202542180 cites W2837297628 @default.
- W3202542180 cites W2899220442 @default.
- W3202542180 cites W2900682747 @default.
- W3202542180 cites W2920083100 @default.
- W3202542180 cites W2922486367 @default.
- W3202542180 cites W2945970499 @default.
- W3202542180 cites W2975761873 @default.
- W3202542180 cites W2986339120 @default.
- W3202542180 cites W3089341989 @default.
- W3202542180 cites W3159563273 @default.
- W3202542180 doi "https://doi.org/10.1016/j.ress.2021.108090" @default.
- W3202542180 hasPublicationYear "2022" @default.
- W3202542180 type Work @default.
- W3202542180 sameAs 3202542180 @default.
- W3202542180 citedByCount "44" @default.
- W3202542180 countsByYear W32025421802021 @default.
- W3202542180 countsByYear W32025421802022 @default.
- W3202542180 countsByYear W32025421802023 @default.
- W3202542180 crossrefType "journal-article" @default.
- W3202542180 hasAuthorship W3202542180A5020451053 @default.
- W3202542180 hasAuthorship W3202542180A5032489133 @default.
- W3202542180 hasAuthorship W3202542180A5045751633 @default.
- W3202542180 hasAuthorship W3202542180A5071057752 @default.
- W3202542180 hasAuthorship W3202542180A5072835142 @default.
- W3202542180 hasAuthorship W3202542180A5076218130 @default.
- W3202542180 hasAuthorship W3202542180A5076297227 @default.
- W3202542180 hasConcept C108583219 @default.
- W3202542180 hasConcept C119857082 @default.
- W3202542180 hasConcept C121332964 @default.
- W3202542180 hasConcept C127413603 @default.
- W3202542180 hasConcept C134306372 @default.
- W3202542180 hasConcept C136264566 @default.
- W3202542180 hasConcept C143724316 @default.
- W3202542180 hasConcept C151406439 @default.
- W3202542180 hasConcept C151730666 @default.
- W3202542180 hasConcept C154945302 @default.
- W3202542180 hasConcept C162324750 @default.
- W3202542180 hasConcept C163258240 @default.
- W3202542180 hasConcept C182365436 @default.
- W3202542180 hasConcept C22212356 @default.
- W3202542180 hasConcept C2778022998 @default.
- W3202542180 hasConcept C2780378061 @default.
- W3202542180 hasConcept C3017552255 @default.
- W3202542180 hasConcept C33923547 @default.
- W3202542180 hasConcept C41008148 @default.
- W3202542180 hasConcept C43214815 @default.
- W3202542180 hasConcept C50644808 @default.
- W3202542180 hasConcept C539828613 @default.
- W3202542180 hasConcept C62520636 @default.
- W3202542180 hasConcept C79403827 @default.
- W3202542180 hasConcept C86803240 @default.
- W3202542180 hasConceptScore W3202542180C108583219 @default.
- W3202542180 hasConceptScore W3202542180C119857082 @default.
- W3202542180 hasConceptScore W3202542180C121332964 @default.
- W3202542180 hasConceptScore W3202542180C127413603 @default.
- W3202542180 hasConceptScore W3202542180C134306372 @default.
- W3202542180 hasConceptScore W3202542180C136264566 @default.
- W3202542180 hasConceptScore W3202542180C143724316 @default.
- W3202542180 hasConceptScore W3202542180C151406439 @default.
- W3202542180 hasConceptScore W3202542180C151730666 @default.
- W3202542180 hasConceptScore W3202542180C154945302 @default.
- W3202542180 hasConceptScore W3202542180C162324750 @default.
- W3202542180 hasConceptScore W3202542180C163258240 @default.
- W3202542180 hasConceptScore W3202542180C182365436 @default.
- W3202542180 hasConceptScore W3202542180C22212356 @default.
- W3202542180 hasConceptScore W3202542180C2778022998 @default.
- W3202542180 hasConceptScore W3202542180C2780378061 @default.
- W3202542180 hasConceptScore W3202542180C3017552255 @default.
- W3202542180 hasConceptScore W3202542180C33923547 @default.
- W3202542180 hasConceptScore W3202542180C41008148 @default.