Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202546516> ?p ?o ?g. }
- W3202546516 endingPage "2819" @default.
- W3202546516 startingPage "2733" @default.
- W3202546516 abstract "Deep reinforcement learning augments the reinforcement learning framework and utilizes the powerful representation of deep neural networks. Recent works have demonstrated the remarkable successes of deep reinforcement learning in various domains including finance, medicine, healthcare, video games, robotics, and computer vision. In this work, we provide a detailed review of recent and state-of-the-art research advances of deep reinforcement learning in computer vision. We start with comprehending the theories of deep learning, reinforcement learning, and deep reinforcement learning. We then propose a categorization of deep reinforcement learning methodologies and discuss their advantages and limitations. In particular, we divide deep reinforcement learning into seven main categories according to their applications in computer vision, i.e. (i) landmark localization (ii) object detection; (iii) object tracking; (iv) registration on both 2D image and 3D image volumetric data (v) image segmentation; (vi) videos analysis; and (vii) other applications. Each of these categories is further analyzed with reinforcement learning techniques, network design, and performance. Moreover, we provide a comprehensive analysis of the existing publicly available datasets and examine source code availability. Finally, we present some open issues and discuss future research directions on deep reinforcement learning in computer vision." @default.
- W3202546516 created "2021-10-11" @default.
- W3202546516 creator A5022963260 @default.
- W3202546516 creator A5023725893 @default.
- W3202546516 creator A5056226189 @default.
- W3202546516 creator A5057959136 @default.
- W3202546516 creator A5089288624 @default.
- W3202546516 date "2021-09-29" @default.
- W3202546516 modified "2023-10-17" @default.
- W3202546516 title "Deep reinforcement learning in computer vision: a comprehensive survey" @default.
- W3202546516 cites W106517363 @default.
- W3202546516 cites W1238551 @default.
- W3202546516 cites W125199751 @default.
- W3202546516 cites W125693051 @default.
- W3202546516 cites W1507506748 @default.
- W3202546516 cites W1531192956 @default.
- W3202546516 cites W1536680647 @default.
- W3202546516 cites W1565402342 @default.
- W3202546516 cites W1573412753 @default.
- W3202546516 cites W1641498739 @default.
- W3202546516 cites W1714211023 @default.
- W3202546516 cites W1834627138 @default.
- W3202546516 cites W1837445442 @default.
- W3202546516 cites W1857884451 @default.
- W3202546516 cites W1901129140 @default.
- W3202546516 cites W1903029394 @default.
- W3202546516 cites W1915785815 @default.
- W3202546516 cites W1926243429 @default.
- W3202546516 cites W1929309940 @default.
- W3202546516 cites W1930392762 @default.
- W3202546516 cites W1947031653 @default.
- W3202546516 cites W1948751323 @default.
- W3202546516 cites W1966872876 @default.
- W3202546516 cites W1969074599 @default.
- W3202546516 cites W1970686984 @default.
- W3202546516 cites W1972063518 @default.
- W3202546516 cites W1973054923 @default.
- W3202546516 cites W1977655452 @default.
- W3202546516 cites W1982780211 @default.
- W3202546516 cites W1987200013 @default.
- W3202546516 cites W1987366351 @default.
- W3202546516 cites W1996579288 @default.
- W3202546516 cites W1999874108 @default.
- W3202546516 cites W2009792715 @default.
- W3202546516 cites W2009874829 @default.
- W3202546516 cites W2016135469 @default.
- W3202546516 cites W2018227909 @default.
- W3202546516 cites W2020209171 @default.
- W3202546516 cites W2046633936 @default.
- W3202546516 cites W2055022211 @default.
- W3202546516 cites W2060499860 @default.
- W3202546516 cites W2064675550 @default.
- W3202546516 cites W2067912884 @default.
- W3202546516 cites W2068730032 @default.
- W3202546516 cites W2069891133 @default.
- W3202546516 cites W2070129829 @default.
- W3202546516 cites W2070578790 @default.
- W3202546516 cites W2073797178 @default.
- W3202546516 cites W2077008573 @default.
- W3202546516 cites W2078524519 @default.
- W3202546516 cites W2081864293 @default.
- W3202546516 cites W2088049833 @default.
- W3202546516 cites W2089954205 @default.
- W3202546516 cites W2089961441 @default.
- W3202546516 cites W2090424610 @default.
- W3202546516 cites W2093791612 @default.
- W3202546516 cites W2094387729 @default.
- W3202546516 cites W2097117768 @default.
- W3202546516 cites W2097546612 @default.
- W3202546516 cites W2099618002 @default.
- W3202546516 cites W2102605133 @default.
- W3202546516 cites W2103359683 @default.
- W3202546516 cites W2106033751 @default.
- W3202546516 cites W2107138380 @default.
- W3202546516 cites W2107775979 @default.
- W3202546516 cites W2107878631 @default.
- W3202546516 cites W2108598243 @default.
- W3202546516 cites W2110644024 @default.
- W3202546516 cites W2110717643 @default.
- W3202546516 cites W2112420033 @default.
- W3202546516 cites W2113094491 @default.
- W3202546516 cites W2113325037 @default.
- W3202546516 cites W2113708607 @default.
- W3202546516 cites W2115613106 @default.
- W3202546516 cites W2117539524 @default.
- W3202546516 cites W2119717200 @default.
- W3202546516 cites W2120763784 @default.
- W3202546516 cites W2124257654 @default.
- W3202546516 cites W2124351162 @default.
- W3202546516 cites W2125310925 @default.
- W3202546516 cites W2125612430 @default.
- W3202546516 cites W2125637308 @default.
- W3202546516 cites W2127572219 @default.
- W3202546516 cites W2129286681 @default.
- W3202546516 cites W2130775436 @default.
- W3202546516 cites W2133287637 @default.
- W3202546516 cites W2133665775 @default.
- W3202546516 cites W2134491302 @default.