Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202551657> ?p ?o ?g. }
- W3202551657 abstract "Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases.In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework." @default.
- W3202551657 created "2021-10-11" @default.
- W3202551657 creator A5000635250 @default.
- W3202551657 creator A5023555343 @default.
- W3202551657 creator A5090393044 @default.
- W3202551657 date "2021-09-28" @default.
- W3202551657 modified "2023-10-14" @default.
- W3202551657 title "Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction" @default.
- W3202551657 cites W1507361162 @default.
- W3202551657 cites W1757407923 @default.
- W3202551657 cites W1966716734 @default.
- W3202551657 cites W1974350437 @default.
- W3202551657 cites W1975847255 @default.
- W3202551657 cites W1981820702 @default.
- W3202551657 cites W1999283025 @default.
- W3202551657 cites W2000833392 @default.
- W3202551657 cites W2007015770 @default.
- W3202551657 cites W2013900075 @default.
- W3202551657 cites W2039816251 @default.
- W3202551657 cites W2057094700 @default.
- W3202551657 cites W2067410483 @default.
- W3202551657 cites W2071271349 @default.
- W3202551657 cites W2071590480 @default.
- W3202551657 cites W2087351768 @default.
- W3202551657 cites W2100967414 @default.
- W3202551657 cites W2105362408 @default.
- W3202551657 cites W2105445723 @default.
- W3202551657 cites W2106029302 @default.
- W3202551657 cites W2115464628 @default.
- W3202551657 cites W2130313087 @default.
- W3202551657 cites W2130543801 @default.
- W3202551657 cites W2141222510 @default.
- W3202551657 cites W2141831115 @default.
- W3202551657 cites W2143129697 @default.
- W3202551657 cites W2146863542 @default.
- W3202551657 cites W2149067299 @default.
- W3202551657 cites W2150780222 @default.
- W3202551657 cites W2152970345 @default.
- W3202551657 cites W2164252048 @default.
- W3202551657 cites W2199784525 @default.
- W3202551657 cites W2205277042 @default.
- W3202551657 cites W2280631190 @default.
- W3202551657 cites W2299025755 @default.
- W3202551657 cites W2314065766 @default.
- W3202551657 cites W2345769277 @default.
- W3202551657 cites W2507628504 @default.
- W3202551657 cites W2561297934 @default.
- W3202551657 cites W2565893173 @default.
- W3202551657 cites W2566575894 @default.
- W3202551657 cites W2578321666 @default.
- W3202551657 cites W2590417095 @default.
- W3202551657 cites W2591268383 @default.
- W3202551657 cites W2605001769 @default.
- W3202551657 cites W2611747160 @default.
- W3202551657 cites W2616792229 @default.
- W3202551657 cites W2626587929 @default.
- W3202551657 cites W2630915474 @default.
- W3202551657 cites W2763023272 @default.
- W3202551657 cites W2772618228 @default.
- W3202551657 cites W2801501532 @default.
- W3202551657 cites W2805805940 @default.
- W3202551657 cites W2808239630 @default.
- W3202551657 cites W2881172925 @default.
- W3202551657 cites W2888800941 @default.
- W3202551657 cites W2893777382 @default.
- W3202551657 cites W2895679848 @default.
- W3202551657 cites W2901870954 @default.
- W3202551657 cites W2911286998 @default.
- W3202551657 cites W2916950683 @default.
- W3202551657 cites W2918193787 @default.
- W3202551657 cites W2918936289 @default.
- W3202551657 cites W2940644952 @default.
- W3202551657 cites W2946431514 @default.
- W3202551657 cites W2948848957 @default.
- W3202551657 cites W2950777612 @default.
- W3202551657 cites W2952153265 @default.
- W3202551657 cites W2961565435 @default.
- W3202551657 cites W2966026169 @default.
- W3202551657 cites W2971447153 @default.
- W3202551657 cites W3000082418 @default.
- W3202551657 cites W3012774707 @default.
- W3202551657 cites W3045879648 @default.
- W3202551657 cites W3099929518 @default.
- W3202551657 cites W3100993589 @default.
- W3202551657 cites W3120280121 @default.
- W3202551657 cites W3127251420 @default.
- W3202551657 cites W3145754360 @default.
- W3202551657 cites W622497121 @default.
- W3202551657 doi "https://doi.org/10.1093/bib/bbab407" @default.
- W3202551657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34585231" @default.
- W3202551657 hasPublicationYear "2021" @default.
- W3202551657 type Work @default.
- W3202551657 sameAs 3202551657 @default.
- W3202551657 citedByCount "20" @default.
- W3202551657 countsByYear W32025516572022 @default.
- W3202551657 countsByYear W32025516572023 @default.
- W3202551657 crossrefType "journal-article" @default.
- W3202551657 hasAuthorship W3202551657A5000635250 @default.
- W3202551657 hasAuthorship W3202551657A5023555343 @default.
- W3202551657 hasAuthorship W3202551657A5090393044 @default.