Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202564494> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3202564494 endingPage "103371" @default.
- W3202564494 startingPage "103371" @default.
- W3202564494 abstract "This paper proposes a secure blockchain based energy trading system for residential homes. In the system, a new proof-of-computational closeness (PoCC) consensus protocol is proposed for the selection of miners and the creation of blocks. Moreover, an analytical energy pricing policy is designed to solve the problem of existing energy pricing policies in a distributed trading environment. A dynamic multi-pseudonym mechanism is developed for the prosumers to preserve their transactional privacy during energy trading. Since it requires extra storage and computing resources for the blockchain miners to simultaneously execute both mining process and application intensive tasks, therefore, an improved sparse neural network (ISNN) is proposed for computation offloading to the cloud servers. In ISNN, a Jaya optimization algorithm is used to accelerate the error convergence rate while reducing the number of connections between different layers of neurons. Besides, ISNN optimizes the overall computational cost of the system. Furthermore, the security of the prosumers is ensured using blockchain technology while security analysis shows that the system is robust against the Sybil attack. The proposed blockchain based peer-to-peer secure energy trading system is extremely important for sustainable cities and society. Simulations are conducted to evaluate the effectiveness of the proposed system. The proposed pricing policy is compared with time-of-use pricing, critical peak pricing and real-time pricing policies. From the results, it is proved that the prosumers achieve a higher degree of satisfaction and utility when using the proposed pricing policy. Moreover, the probability of a successful Sybil attack is zero as the number of attackers’ identities and computational capacities increases. Under different sizes of data to be uploaded, the proposed ISNN scheme has the least average computational cost and data transmission time as compared to deep reinforcement learning combined with genetic algorithm (DRGO) and sparse evolutionary training and multi-layer perceptron (SET-MLP) schemes in the literature. Moreover, the proposed system is tested for scalability by increasing the number of prosumers. Extensive simulations are performed and the results depict the satisfactory performance of the proposed system." @default.
- W3202564494 created "2021-10-11" @default.
- W3202564494 creator A5025099035 @default.
- W3202564494 creator A5031266051 @default.
- W3202564494 creator A5055380996 @default.
- W3202564494 creator A5065526646 @default.
- W3202564494 date "2022-01-01" @default.
- W3202564494 modified "2023-10-06" @default.
- W3202564494 title "Towards sustainable smart cities: A secure and scalable trading system for residential homes using blockchain and artificial intelligence" @default.
- W3202564494 cites W1989386584 @default.
- W3202564494 cites W2032901652 @default.
- W3202564494 cites W2581327637 @default.
- W3202564494 cites W2605562920 @default.
- W3202564494 cites W2752019525 @default.
- W3202564494 cites W2810593442 @default.
- W3202564494 cites W2888442703 @default.
- W3202564494 cites W2898155611 @default.
- W3202564494 cites W2904821893 @default.
- W3202564494 cites W2909146079 @default.
- W3202564494 cites W2909202584 @default.
- W3202564494 cites W2912326896 @default.
- W3202564494 cites W2914317125 @default.
- W3202564494 cites W2945136984 @default.
- W3202564494 cites W2946273902 @default.
- W3202564494 cites W2948606700 @default.
- W3202564494 cites W2949226003 @default.
- W3202564494 cites W2963886666 @default.
- W3202564494 cites W2966452567 @default.
- W3202564494 cites W2977694077 @default.
- W3202564494 cites W2997702679 @default.
- W3202564494 cites W3009727767 @default.
- W3202564494 cites W3017614378 @default.
- W3202564494 cites W3023165027 @default.
- W3202564494 cites W3113404185 @default.
- W3202564494 cites W3141002258 @default.
- W3202564494 cites W3170183213 @default.
- W3202564494 doi "https://doi.org/10.1016/j.scs.2021.103371" @default.
- W3202564494 hasPublicationYear "2022" @default.
- W3202564494 type Work @default.
- W3202564494 sameAs 3202564494 @default.
- W3202564494 citedByCount "19" @default.
- W3202564494 countsByYear W32025644942022 @default.
- W3202564494 countsByYear W32025644942023 @default.
- W3202564494 crossrefType "journal-article" @default.
- W3202564494 hasAuthorship W3202564494A5025099035 @default.
- W3202564494 hasAuthorship W3202564494A5031266051 @default.
- W3202564494 hasAuthorship W3202564494A5055380996 @default.
- W3202564494 hasAuthorship W3202564494A5065526646 @default.
- W3202564494 hasConcept C111919701 @default.
- W3202564494 hasConcept C120314980 @default.
- W3202564494 hasConcept C144133560 @default.
- W3202564494 hasConcept C162853370 @default.
- W3202564494 hasConcept C2779391423 @default.
- W3202564494 hasConcept C2779687700 @default.
- W3202564494 hasConcept C2779950589 @default.
- W3202564494 hasConcept C31258907 @default.
- W3202564494 hasConcept C38652104 @default.
- W3202564494 hasConcept C41008148 @default.
- W3202564494 hasConcept C48044578 @default.
- W3202564494 hasConcept C77088390 @default.
- W3202564494 hasConcept C79974875 @default.
- W3202564494 hasConcept C93996380 @default.
- W3202564494 hasConceptScore W3202564494C111919701 @default.
- W3202564494 hasConceptScore W3202564494C120314980 @default.
- W3202564494 hasConceptScore W3202564494C144133560 @default.
- W3202564494 hasConceptScore W3202564494C162853370 @default.
- W3202564494 hasConceptScore W3202564494C2779391423 @default.
- W3202564494 hasConceptScore W3202564494C2779687700 @default.
- W3202564494 hasConceptScore W3202564494C2779950589 @default.
- W3202564494 hasConceptScore W3202564494C31258907 @default.
- W3202564494 hasConceptScore W3202564494C38652104 @default.
- W3202564494 hasConceptScore W3202564494C41008148 @default.
- W3202564494 hasConceptScore W3202564494C48044578 @default.
- W3202564494 hasConceptScore W3202564494C77088390 @default.
- W3202564494 hasConceptScore W3202564494C79974875 @default.
- W3202564494 hasConceptScore W3202564494C93996380 @default.
- W3202564494 hasLocation W32025644941 @default.
- W3202564494 hasOpenAccess W3202564494 @default.
- W3202564494 hasPrimaryLocation W32025644941 @default.
- W3202564494 hasRelatedWork W1596010778 @default.
- W3202564494 hasRelatedWork W2182566061 @default.
- W3202564494 hasRelatedWork W2364921833 @default.
- W3202564494 hasRelatedWork W2385146268 @default.
- W3202564494 hasRelatedWork W2908790200 @default.
- W3202564494 hasRelatedWork W3214573662 @default.
- W3202564494 hasRelatedWork W4206573979 @default.
- W3202564494 hasRelatedWork W4308017608 @default.
- W3202564494 hasRelatedWork W4310607303 @default.
- W3202564494 hasRelatedWork W4368366873 @default.
- W3202564494 hasVolume "76" @default.
- W3202564494 isParatext "false" @default.
- W3202564494 isRetracted "false" @default.
- W3202564494 magId "3202564494" @default.
- W3202564494 workType "article" @default.