Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202565730> ?p ?o ?g. }
- W3202565730 endingPage "108014" @default.
- W3202565730 startingPage "108014" @default.
- W3202565730 abstract "This paper presents a long short-term memory (LSTM)-augmented deep learning framework for time-dependent reliability analysis of dynamic systems. To capture the behavior of dynamic systems under time-dependent uncertainties, multiple LSTMs are trained to generate local surrogate models of dynamic systems in the time-independent system input space. With these local surrogate models, the time-dependent responses of dynamic systems at specific input configurations can be predicted as an augmented dataset accordingly. Then feedforward neural networks (FNN) can be trained as global surrogate models of dynamic systems based on the augmented data. To further enhance the performance of the global surrogate models, the Gaussian process regression technique is utilized to optimize the architecture of the FNNs by minimizing a validation loss. With the global surrogates, the time-dependent system reliability can be directly approximated by the Monte Carlo simulation (MCS). Three case studies are used to demonstrate the effectiveness of the proposed approach." @default.
- W3202565730 created "2021-10-11" @default.
- W3202565730 creator A5048675051 @default.
- W3202565730 creator A5077972623 @default.
- W3202565730 date "2022-01-01" @default.
- W3202565730 modified "2023-09-30" @default.
- W3202565730 title "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems" @default.
- W3202565730 cites W1966109017 @default.
- W3202565730 cites W1991565519 @default.
- W3202565730 cites W2000119532 @default.
- W3202565730 cites W2000774120 @default.
- W3202565730 cites W2072897170 @default.
- W3202565730 cites W2114509411 @default.
- W3202565730 cites W2143281686 @default.
- W3202565730 cites W2155117533 @default.
- W3202565730 cites W2338207464 @default.
- W3202565730 cites W2483957145 @default.
- W3202565730 cites W2532950076 @default.
- W3202565730 cites W2581983241 @default.
- W3202565730 cites W2593715324 @default.
- W3202565730 cites W2642384746 @default.
- W3202565730 cites W2753370870 @default.
- W3202565730 cites W2757101479 @default.
- W3202565730 cites W2757374624 @default.
- W3202565730 cites W2765311403 @default.
- W3202565730 cites W2766044833 @default.
- W3202565730 cites W2769332332 @default.
- W3202565730 cites W2791131283 @default.
- W3202565730 cites W2799464179 @default.
- W3202565730 cites W2900325101 @default.
- W3202565730 cites W2905361149 @default.
- W3202565730 cites W2911003092 @default.
- W3202565730 cites W2917209141 @default.
- W3202565730 cites W2942271347 @default.
- W3202565730 cites W2946091242 @default.
- W3202565730 cites W2972268072 @default.
- W3202565730 cites W2983940723 @default.
- W3202565730 cites W2989261586 @default.
- W3202565730 cites W2997447739 @default.
- W3202565730 cites W3000877573 @default.
- W3202565730 cites W3036880321 @default.
- W3202565730 cites W3040630238 @default.
- W3202565730 cites W3043842711 @default.
- W3202565730 cites W3081572661 @default.
- W3202565730 cites W3084837888 @default.
- W3202565730 cites W3089341989 @default.
- W3202565730 cites W3091674381 @default.
- W3202565730 cites W3094538362 @default.
- W3202565730 cites W3120894151 @default.
- W3202565730 cites W3176632751 @default.
- W3202565730 doi "https://doi.org/10.1016/j.ress.2021.108014" @default.
- W3202565730 hasPublicationYear "2022" @default.
- W3202565730 type Work @default.
- W3202565730 sameAs 3202565730 @default.
- W3202565730 citedByCount "14" @default.
- W3202565730 countsByYear W32025657302022 @default.
- W3202565730 countsByYear W32025657302023 @default.
- W3202565730 crossrefType "journal-article" @default.
- W3202565730 hasAuthorship W3202565730A5048675051 @default.
- W3202565730 hasAuthorship W3202565730A5077972623 @default.
- W3202565730 hasConcept C105795698 @default.
- W3202565730 hasConcept C108583219 @default.
- W3202565730 hasConcept C119857082 @default.
- W3202565730 hasConcept C121332964 @default.
- W3202565730 hasConcept C127413603 @default.
- W3202565730 hasConcept C131675550 @default.
- W3202565730 hasConcept C133731056 @default.
- W3202565730 hasConcept C154945302 @default.
- W3202565730 hasConcept C163258240 @default.
- W3202565730 hasConcept C163716315 @default.
- W3202565730 hasConcept C19499675 @default.
- W3202565730 hasConcept C197298091 @default.
- W3202565730 hasConcept C199360897 @default.
- W3202565730 hasConcept C33923547 @default.
- W3202565730 hasConcept C38858127 @default.
- W3202565730 hasConcept C41008148 @default.
- W3202565730 hasConcept C43214815 @default.
- W3202565730 hasConcept C50644808 @default.
- W3202565730 hasConcept C61326573 @default.
- W3202565730 hasConcept C62520636 @default.
- W3202565730 hasConcept C81692654 @default.
- W3202565730 hasConceptScore W3202565730C105795698 @default.
- W3202565730 hasConceptScore W3202565730C108583219 @default.
- W3202565730 hasConceptScore W3202565730C119857082 @default.
- W3202565730 hasConceptScore W3202565730C121332964 @default.
- W3202565730 hasConceptScore W3202565730C127413603 @default.
- W3202565730 hasConceptScore W3202565730C131675550 @default.
- W3202565730 hasConceptScore W3202565730C133731056 @default.
- W3202565730 hasConceptScore W3202565730C154945302 @default.
- W3202565730 hasConceptScore W3202565730C163258240 @default.
- W3202565730 hasConceptScore W3202565730C163716315 @default.
- W3202565730 hasConceptScore W3202565730C19499675 @default.
- W3202565730 hasConceptScore W3202565730C197298091 @default.
- W3202565730 hasConceptScore W3202565730C199360897 @default.
- W3202565730 hasConceptScore W3202565730C33923547 @default.
- W3202565730 hasConceptScore W3202565730C38858127 @default.
- W3202565730 hasConceptScore W3202565730C41008148 @default.
- W3202565730 hasConceptScore W3202565730C43214815 @default.