Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202585088> ?p ?o ?g. }
- W3202585088 endingPage "150633" @default.
- W3202585088 startingPage "150633" @default.
- W3202585088 abstract "Multiple processes are involved in Cd transfer in rice plants, including root uptake, xylem loading, and immobilization. These processes can be mediated by membrane transporters and can alter Cd speciation by binding Cd to different organic ligands. However, it remains unclear which processes control Cd transport in rice in response to different watering conditions in soil. Herein, Cd isotope fractionation and Cd-related gene expression were employed to investigate the key regulatory mechanisms during uptake, root-to-shoot, and stem-to-leaf transport of Cd in rice grown in pot experiments with Cd-contaminated soil under flooded and non-flooded conditions, respectively. The results showed that soil flooding decreased the Cd concentration in soil porewater and, thereby, Cd uptake and transport in rice. Cd isotopes fractionated negatively from soil porewater to the whole rice (flooded: ∆114/110Cdrice-porewater = -0.15‰, non-flooded: ∆114/110Cdrice-porewater = -0.39‰), suggesting that Cd transporters preferentially absorbed light Cd isotopes. The non-flooded treatment revealed an upregulated expression of OsNRAMP1 and OsNRAMP5 genes compared to the flooded treatment, which may partially contribute to its more pronounced porewater-to-rice fractionation. Cd isotopes fractionated positively from roots to shoots under flooded conditions (∆114/110Cdshoot-root = 0.19‰). However, a reverse direction of fractionation was observed under non-flooded conditions (∆114/110Cdshoot-root = -0.67‰), which was associated with the substantial upregulation of CAL1 in roots, facilitating xylem loading of Cd-CAL1 complexes with lighter isotopes. After being transported to the shoots, the majority of Cd were detained in stems (44%-55%), which were strongly enriched in lighter isotopes than in the leaves (∆114/110Cdleaf-stem = 0.77 to 1.01‰). Besides the Cd-CAL1 transported from the roots, the expression of OsPCS1 and OsHMA3 in the stems could also favor the enrichment of Cd-PCs with lighter isotopes, leaving heavier isotopes to be transported to the leaves. The higher expression levels of OsMT1e in older leaves than in younger leaves implied that Cd immobilization via binding to metallothioneins like OsMT1e may favor the enrichment of lighter isotopes in older leaves. The non-flooded treatment showed lighter Cd isotopes in younger leaves than the flooded treatment, suggesting that more Cd-CAL1 in the stems and Cd-PCs in the older leaves might be transported to the younger leaves under non-flooded conditions. Our results demonstrate that isotopically light Cd can be preferentially transported from roots to shoots when more Cd is absorbed by rice under non-flooded conditions, and isotope fractionation signature together with gene expression quantification has the potential to provide a better understanding of the key processes regulating Cd transfer in rice." @default.
- W3202585088 created "2021-10-11" @default.
- W3202585088 creator A5012944438 @default.
- W3202585088 creator A5022425976 @default.
- W3202585088 creator A5030481154 @default.
- W3202585088 creator A5033305156 @default.
- W3202585088 creator A5041338811 @default.
- W3202585088 creator A5042908199 @default.
- W3202585088 creator A5048591027 @default.
- W3202585088 creator A5065047387 @default.
- W3202585088 creator A5091560981 @default.
- W3202585088 date "2022-02-01" @default.
- W3202585088 modified "2023-10-18" @default.
- W3202585088 title "Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression" @default.
- W3202585088 cites W1578363155 @default.
- W3202585088 cites W1750529088 @default.
- W3202585088 cites W1910732126 @default.
- W3202585088 cites W1997444916 @default.
- W3202585088 cites W2011634150 @default.
- W3202585088 cites W2042751937 @default.
- W3202585088 cites W2047111475 @default.
- W3202585088 cites W2054610803 @default.
- W3202585088 cites W2067838278 @default.
- W3202585088 cites W2077561212 @default.
- W3202585088 cites W2092166815 @default.
- W3202585088 cites W2095143319 @default.
- W3202585088 cites W2107277218 @default.
- W3202585088 cites W2112730599 @default.
- W3202585088 cites W2137477806 @default.
- W3202585088 cites W2142288445 @default.
- W3202585088 cites W2148671803 @default.
- W3202585088 cites W2149104677 @default.
- W3202585088 cites W2159827101 @default.
- W3202585088 cites W2163287509 @default.
- W3202585088 cites W2166462057 @default.
- W3202585088 cites W2169000812 @default.
- W3202585088 cites W2317200742 @default.
- W3202585088 cites W2322506450 @default.
- W3202585088 cites W2327673562 @default.
- W3202585088 cites W2350514175 @default.
- W3202585088 cites W2402920746 @default.
- W3202585088 cites W2414531087 @default.
- W3202585088 cites W2476609122 @default.
- W3202585088 cites W2513826178 @default.
- W3202585088 cites W2524153749 @default.
- W3202585088 cites W2560955326 @default.
- W3202585088 cites W2562871254 @default.
- W3202585088 cites W2612225173 @default.
- W3202585088 cites W2773502945 @default.
- W3202585088 cites W2793520006 @default.
- W3202585088 cites W2794185758 @default.
- W3202585088 cites W2794841184 @default.
- W3202585088 cites W2805842183 @default.
- W3202585088 cites W2884160969 @default.
- W3202585088 cites W2895784943 @default.
- W3202585088 cites W2900259326 @default.
- W3202585088 cites W2913719881 @default.
- W3202585088 cites W2921678067 @default.
- W3202585088 cites W2933185290 @default.
- W3202585088 cites W2966617868 @default.
- W3202585088 cites W3013020445 @default.
- W3202585088 cites W3042752572 @default.
- W3202585088 cites W3046703265 @default.
- W3202585088 cites W3082480946 @default.
- W3202585088 cites W3084296419 @default.
- W3202585088 cites W3093664490 @default.
- W3202585088 cites W3098338075 @default.
- W3202585088 cites W3101916646 @default.
- W3202585088 cites W3109825610 @default.
- W3202585088 cites W3113351348 @default.
- W3202585088 cites W3131434268 @default.
- W3202585088 cites W3137572548 @default.
- W3202585088 cites W3157495234 @default.
- W3202585088 cites W3160921646 @default.
- W3202585088 doi "https://doi.org/10.1016/j.scitotenv.2021.150633" @default.
- W3202585088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34592274" @default.
- W3202585088 hasPublicationYear "2022" @default.
- W3202585088 type Work @default.
- W3202585088 sameAs 3202585088 @default.
- W3202585088 citedByCount "16" @default.
- W3202585088 countsByYear W32025850882022 @default.
- W3202585088 countsByYear W32025850882023 @default.
- W3202585088 crossrefType "journal-article" @default.
- W3202585088 hasAuthorship W3202585088A5012944438 @default.
- W3202585088 hasAuthorship W3202585088A5022425976 @default.
- W3202585088 hasAuthorship W3202585088A5030481154 @default.
- W3202585088 hasAuthorship W3202585088A5033305156 @default.
- W3202585088 hasAuthorship W3202585088A5041338811 @default.
- W3202585088 hasAuthorship W3202585088A5042908199 @default.
- W3202585088 hasAuthorship W3202585088A5048591027 @default.
- W3202585088 hasAuthorship W3202585088A5065047387 @default.
- W3202585088 hasAuthorship W3202585088A5091560981 @default.
- W3202585088 hasConcept C104317684 @default.
- W3202585088 hasConcept C107872376 @default.
- W3202585088 hasConcept C127561419 @default.
- W3202585088 hasConcept C149011108 @default.
- W3202585088 hasConcept C178790620 @default.
- W3202585088 hasConcept C185592680 @default.