Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202592105> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3202592105 abstract "Abstract Predicting aerodynamic forces on bluff bodies remains to be a challenging task due to the unpredictable flow behavior, specifically at higher Reynolds numbers. Experimental approaches to determine aerodynamic coefficients could be costly and time consuming. In the meantime, use of numerical techniques could also require a considerable computational cost and time depending on complexity of the flow behavior. The research focusses on developing an effective deep learning technique to predict aerodynamic force coefficients acting on elliptical bluff bodies for a given aspect ratio and given flow condition. Collecting data for drag and lift coefficients of several aspect ratios for flow conditions starting from onset of vortex shredding to verge of subcritical region is conducted by an accurate full order model. The specified region will provide a transient flow behavior and thus lift coefficient will be represented in terms of root mean square value and drag coefficient in terms of a mean value. With variations in flow behavior and vortex shredding frequencies, it requires to select an appropriate turbulence model, optimum discretization of fluid domain and time step to obtain an accurate result. Flow simulations are conducted primarily using Unsteady Reynolds Averaged Navier-Stokes Equations (URANS) model and Detached Eddy Simulations (DES) model. Effectiveness in using different turbulence models for specified flow regimes are also explored in comparison to available experimental results. At lower Reynolds numbers, aerodynamic force coefficients for a specified body will only depend on Reynolds number. But after a certain specific Reynolds number, aerodynamic forces are dependent on the Mach number in addition to Reynolds number. Therefore, for higher Reynolds numbers, aerodynamic force coefficients are recorded for multiple Mach numbers with same Reynolds number and will be fed to the neural network. With the development of the machine learning and neural network modelling, many of the fields have nourished and created effective and efficient technologies to ease complex functions and activities. Our goal is to ease the complexity in the computational fluid dynamic field with a deep neural network tool created to predict drag and lift coefficient of elliptical bluff bodies for a given aspect ratio with an acceptable accuracy level. Researchers have developed deep neural network tools to predict various flow conditions and have succeeded with sufficient accuracy and a satisfying reduction of computational cost. In our proposed deep learning neural network, we have chosen to model the network with inputs as the geometry setup and the flow conditions with validated drag and lift coefficients. The model will extract the necessary flow features into filters with the convolution operation performed on the inputs. Our main directive is to create a deep learned neural network tool to predict the target values within an acceptable range of accuracy while minimizing the computation cost." @default.
- W3202592105 created "2021-10-11" @default.
- W3202592105 creator A5037148672 @default.
- W3202592105 creator A5046292441 @default.
- W3202592105 creator A5064018948 @default.
- W3202592105 creator A5074012181 @default.
- W3202592105 date "2021-08-10" @default.
- W3202592105 modified "2023-09-23" @default.
- W3202592105 title "Deep Learning Techniques for Effective Prediction of Aerodynamic Properties of Elliptical Bluff Bodies" @default.
- W3202592105 doi "https://doi.org/10.1115/fedsm2021-66265" @default.
- W3202592105 hasPublicationYear "2021" @default.
- W3202592105 type Work @default.
- W3202592105 sameAs 3202592105 @default.
- W3202592105 citedByCount "0" @default.
- W3202592105 crossrefType "proceedings-article" @default.
- W3202592105 hasAuthorship W3202592105A5037148672 @default.
- W3202592105 hasAuthorship W3202592105A5046292441 @default.
- W3202592105 hasAuthorship W3202592105A5064018948 @default.
- W3202592105 hasAuthorship W3202592105A5074012181 @default.
- W3202592105 hasConcept C121332964 @default.
- W3202592105 hasConcept C124101348 @default.
- W3202592105 hasConcept C13393347 @default.
- W3202592105 hasConcept C139002025 @default.
- W3202592105 hasConcept C150486481 @default.
- W3202592105 hasConcept C1633027 @default.
- W3202592105 hasConcept C182748727 @default.
- W3202592105 hasConcept C196558001 @default.
- W3202592105 hasConcept C33923547 @default.
- W3202592105 hasConcept C38349280 @default.
- W3202592105 hasConcept C41008148 @default.
- W3202592105 hasConcept C57879066 @default.
- W3202592105 hasConcept C72117827 @default.
- W3202592105 hasConcept C72921944 @default.
- W3202592105 hasConceptScore W3202592105C121332964 @default.
- W3202592105 hasConceptScore W3202592105C124101348 @default.
- W3202592105 hasConceptScore W3202592105C13393347 @default.
- W3202592105 hasConceptScore W3202592105C139002025 @default.
- W3202592105 hasConceptScore W3202592105C150486481 @default.
- W3202592105 hasConceptScore W3202592105C1633027 @default.
- W3202592105 hasConceptScore W3202592105C182748727 @default.
- W3202592105 hasConceptScore W3202592105C196558001 @default.
- W3202592105 hasConceptScore W3202592105C33923547 @default.
- W3202592105 hasConceptScore W3202592105C38349280 @default.
- W3202592105 hasConceptScore W3202592105C41008148 @default.
- W3202592105 hasConceptScore W3202592105C57879066 @default.
- W3202592105 hasConceptScore W3202592105C72117827 @default.
- W3202592105 hasConceptScore W3202592105C72921944 @default.
- W3202592105 hasLocation W32025921051 @default.
- W3202592105 hasOpenAccess W3202592105 @default.
- W3202592105 hasPrimaryLocation W32025921051 @default.
- W3202592105 hasRelatedWork W1528620772 @default.
- W3202592105 hasRelatedWork W1998049835 @default.
- W3202592105 hasRelatedWork W2043163091 @default.
- W3202592105 hasRelatedWork W2298651637 @default.
- W3202592105 hasRelatedWork W2333780483 @default.
- W3202592105 hasRelatedWork W2385432128 @default.
- W3202592105 hasRelatedWork W2386422222 @default.
- W3202592105 hasRelatedWork W2408085395 @default.
- W3202592105 hasRelatedWork W2558522038 @default.
- W3202592105 hasRelatedWork W2886271738 @default.
- W3202592105 isParatext "false" @default.
- W3202592105 isRetracted "false" @default.
- W3202592105 magId "3202592105" @default.
- W3202592105 workType "article" @default.