Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202646585> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3202646585 abstract "The sorting and identification of camellia seeds is a key technical link in the production and processing of camellia oil. The accurate removal of moldy camellia seeds can reduce the acidity of camellia oil, and the removal of camellia husks can improve the quality of subsequent production of camellia oil products. The traditional image processing methods face the problems of poor human selection features and complex feature extraction process. In this paper, a method for sorting and identifying camellia seeds based on deep learning is established. Based on the Resnet-18 network model, a transfer learning method is used to establish the camellia seed sorting and identification model. This Resnet-18 convolutional neural network proposes a residual function and Shortcut Connections to solve the problem of result degradation and the disappearance of gradient as the number of network layers deepens question. This model can independently recognize the effective features of the object, avoiding the complex process of artificially extracting features in traditional recognition algorithms. In addition, an image acquisition device is designed for the camellia seed mixture after the dehulling process and 1,200 sample pictures were collected. After testing, when the learning rate is 0.001 and the MiniBatchSize is 16, the recognition accuracy rate is 96.21%. The experimental data show that this method can effectively sort and identify Camellia seeds. This research provides a certain theoretical reference for the design of camellia seed sorting machinery." @default.
- W3202646585 created "2021-10-11" @default.
- W3202646585 creator A5011139623 @default.
- W3202646585 creator A5047065510 @default.
- W3202646585 date "2021-07-26" @default.
- W3202646585 modified "2023-10-16" @default.
- W3202646585 title "Sorting and Identification Method of Camellia Seeds Based on Deep Learning" @default.
- W3202646585 cites W2075918793 @default.
- W3202646585 cites W2097117768 @default.
- W3202646585 cites W2124665686 @default.
- W3202646585 cites W2130306094 @default.
- W3202646585 cites W2781245467 @default.
- W3202646585 cites W2791303772 @default.
- W3202646585 cites W2794398677 @default.
- W3202646585 doi "https://doi.org/10.23919/ccc52363.2021.9550450" @default.
- W3202646585 hasPublicationYear "2021" @default.
- W3202646585 type Work @default.
- W3202646585 sameAs 3202646585 @default.
- W3202646585 citedByCount "0" @default.
- W3202646585 crossrefType "proceedings-article" @default.
- W3202646585 hasAuthorship W3202646585A5011139623 @default.
- W3202646585 hasAuthorship W3202646585A5047065510 @default.
- W3202646585 hasConcept C111696304 @default.
- W3202646585 hasConcept C111919701 @default.
- W3202646585 hasConcept C11413529 @default.
- W3202646585 hasConcept C116834253 @default.
- W3202646585 hasConcept C153180895 @default.
- W3202646585 hasConcept C154945302 @default.
- W3202646585 hasConcept C2778153387 @default.
- W3202646585 hasConcept C2780790598 @default.
- W3202646585 hasConcept C38652104 @default.
- W3202646585 hasConcept C41008148 @default.
- W3202646585 hasConcept C59822182 @default.
- W3202646585 hasConcept C77088390 @default.
- W3202646585 hasConcept C81363708 @default.
- W3202646585 hasConcept C86803240 @default.
- W3202646585 hasConcept C88548561 @default.
- W3202646585 hasConcept C98045186 @default.
- W3202646585 hasConceptScore W3202646585C111696304 @default.
- W3202646585 hasConceptScore W3202646585C111919701 @default.
- W3202646585 hasConceptScore W3202646585C11413529 @default.
- W3202646585 hasConceptScore W3202646585C116834253 @default.
- W3202646585 hasConceptScore W3202646585C153180895 @default.
- W3202646585 hasConceptScore W3202646585C154945302 @default.
- W3202646585 hasConceptScore W3202646585C2778153387 @default.
- W3202646585 hasConceptScore W3202646585C2780790598 @default.
- W3202646585 hasConceptScore W3202646585C38652104 @default.
- W3202646585 hasConceptScore W3202646585C41008148 @default.
- W3202646585 hasConceptScore W3202646585C59822182 @default.
- W3202646585 hasConceptScore W3202646585C77088390 @default.
- W3202646585 hasConceptScore W3202646585C81363708 @default.
- W3202646585 hasConceptScore W3202646585C86803240 @default.
- W3202646585 hasConceptScore W3202646585C88548561 @default.
- W3202646585 hasConceptScore W3202646585C98045186 @default.
- W3202646585 hasLocation W32026465851 @default.
- W3202646585 hasOpenAccess W3202646585 @default.
- W3202646585 hasPrimaryLocation W32026465851 @default.
- W3202646585 hasRelatedWork W2175746458 @default.
- W3202646585 hasRelatedWork W2350347958 @default.
- W3202646585 hasRelatedWork W2732542196 @default.
- W3202646585 hasRelatedWork W2738221750 @default.
- W3202646585 hasRelatedWork W2760085659 @default.
- W3202646585 hasRelatedWork W2883200793 @default.
- W3202646585 hasRelatedWork W3012978760 @default.
- W3202646585 hasRelatedWork W3093612317 @default.
- W3202646585 hasRelatedWork W3119026898 @default.
- W3202646585 hasRelatedWork W4312494456 @default.
- W3202646585 isParatext "false" @default.
- W3202646585 isRetracted "false" @default.
- W3202646585 magId "3202646585" @default.
- W3202646585 workType "article" @default.