Matches in SemOpenAlex for { <https://semopenalex.org/work/W320269422> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W320269422 endingPage "90" @default.
- W320269422 startingPage "72" @default.
- W320269422 abstract "An ideal linear sensor is one for which input and output values are always proportional. Typical sensors are, in general, highly nonlinear or seldom sufficiently linear enough to be useful over a wide range or span of interest. Due to the requirement of tedious effort in designing sensor circuits with sufficient linearity for some applications, the word nonlinearity has acquired a pejorative connotation. Hence, a computationally intelligent tool for extending the linear range of an arbitrary sensor is proposed. The linearization technique is carried out by a very efficiently trained neuro-fuzzy hybrid network which compensates for the sensor’s nonlinear characteristic. The training algorithm is very efficient in the sense that it can bring the performance index of the network, such as the sum squared error (SSE), down to the desired error goal much faster than any first order training algorithm. Linearization of a negative temperature coefficient thermistor sensor with an exponentially decaying characteristic function is used as an application example, which demonstrates the efficacy of the procedure. The proposed linearization technique is also applicable for any nonlinear sensor (such as J-type thermocouple or pH sensor), whose output is a monotonically increasing/decreasing function." @default.
- W320269422 created "2016-06-24" @default.
- W320269422 creator A5061761320 @default.
- W320269422 creator A5083499070 @default.
- W320269422 date "2010-05-21" @default.
- W320269422 modified "2023-09-26" @default.
- W320269422 title "Efficient Training Algorithm for Neuro-Fuzzy Network and its Application to Nonlinear Sensor Characteristic Linearization" @default.
- W320269422 cites W2019207321 @default.
- W320269422 cites W2060477610 @default.
- W320269422 cites W2098588509 @default.
- W320269422 cites W2101036899 @default.
- W320269422 cites W2140925059 @default.
- W320269422 cites W2155482699 @default.
- W320269422 doi "https://doi.org/10.4018/978-1-60566-798-0.ch004" @default.
- W320269422 hasPublicationYear "2010" @default.
- W320269422 type Work @default.
- W320269422 sameAs 320269422 @default.
- W320269422 citedByCount "0" @default.
- W320269422 crossrefType "book-chapter" @default.
- W320269422 hasAuthorship W320269422A5061761320 @default.
- W320269422 hasAuthorship W320269422A5083499070 @default.
- W320269422 hasConcept C11210021 @default.
- W320269422 hasConcept C11413529 @default.
- W320269422 hasConcept C121332964 @default.
- W320269422 hasConcept C153294291 @default.
- W320269422 hasConcept C154945302 @default.
- W320269422 hasConcept C158622935 @default.
- W320269422 hasConcept C195975749 @default.
- W320269422 hasConcept C2775924081 @default.
- W320269422 hasConcept C2777211547 @default.
- W320269422 hasConcept C29470771 @default.
- W320269422 hasConcept C41008148 @default.
- W320269422 hasConcept C47446073 @default.
- W320269422 hasConcept C50644808 @default.
- W320269422 hasConcept C58166 @default.
- W320269422 hasConcept C62520636 @default.
- W320269422 hasConceptScore W320269422C11210021 @default.
- W320269422 hasConceptScore W320269422C11413529 @default.
- W320269422 hasConceptScore W320269422C121332964 @default.
- W320269422 hasConceptScore W320269422C153294291 @default.
- W320269422 hasConceptScore W320269422C154945302 @default.
- W320269422 hasConceptScore W320269422C158622935 @default.
- W320269422 hasConceptScore W320269422C195975749 @default.
- W320269422 hasConceptScore W320269422C2775924081 @default.
- W320269422 hasConceptScore W320269422C2777211547 @default.
- W320269422 hasConceptScore W320269422C29470771 @default.
- W320269422 hasConceptScore W320269422C41008148 @default.
- W320269422 hasConceptScore W320269422C47446073 @default.
- W320269422 hasConceptScore W320269422C50644808 @default.
- W320269422 hasConceptScore W320269422C58166 @default.
- W320269422 hasConceptScore W320269422C62520636 @default.
- W320269422 hasLocation W3202694221 @default.
- W320269422 hasOpenAccess W320269422 @default.
- W320269422 hasPrimaryLocation W3202694221 @default.
- W320269422 hasRelatedWork W1598054764 @default.
- W320269422 hasRelatedWork W1602678730 @default.
- W320269422 hasRelatedWork W1615473220 @default.
- W320269422 hasRelatedWork W1973635195 @default.
- W320269422 hasRelatedWork W1986381009 @default.
- W320269422 hasRelatedWork W2019383796 @default.
- W320269422 hasRelatedWork W2051672586 @default.
- W320269422 hasRelatedWork W2062973389 @default.
- W320269422 hasRelatedWork W2126297761 @default.
- W320269422 hasRelatedWork W2155188668 @default.
- W320269422 hasRelatedWork W2157260636 @default.
- W320269422 hasRelatedWork W2187016128 @default.
- W320269422 hasRelatedWork W2362117315 @default.
- W320269422 hasRelatedWork W2367407408 @default.
- W320269422 hasRelatedWork W2552134555 @default.
- W320269422 hasRelatedWork W2734878916 @default.
- W320269422 hasRelatedWork W3084714811 @default.
- W320269422 hasRelatedWork W62818150 @default.
- W320269422 hasRelatedWork W2143174144 @default.
- W320269422 hasRelatedWork W2185897005 @default.
- W320269422 isParatext "false" @default.
- W320269422 isRetracted "false" @default.
- W320269422 magId "320269422" @default.
- W320269422 workType "book-chapter" @default.