Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202773844> ?p ?o ?g. }
- W3202773844 endingPage "110216" @default.
- W3202773844 startingPage "110216" @default.
- W3202773844 abstract "Electrical Impedance Tomography (EIT) is a technique utilized in multiphase flow for identifying flow patterns and void-fraction calculation. An image made of the conductivity of the domain is formed by combining an inverse problem and measurements. Recursive statistical inversion, such as the particle filters, is scarce when dealing with EIT. For that matter, it is proposed a recursive Gauss–Newton Optimization Sequential Importance Resampling (GNOSIR) filter aimed to reconstruct vertical slug flow. It combines the Optimization with an Image Processing algorithm to improve the prior information when the posterior density is far from likelihood. The Level Set Method describes the contour of the inclusion using an elliptical Level Set Function to avoid the curse of dimensionality. Results demonstrate that the GNOSIR filter improves the estimation when there is a sudden and fast evolution of the inclusion’s contour between states. • A recursive filter with optimization is employed for EIT shape estimation. • An image processing procedure gives better prior information when necessary. • Ellipse contours are elected to produce a faster convergence of the estimation. • Results demonstrate that the filter improves faster movement convergence." @default.
- W3202773844 created "2021-10-11" @default.
- W3202773844 creator A5012576976 @default.
- W3202773844 creator A5034123415 @default.
- W3202773844 creator A5036937078 @default.
- W3202773844 creator A5047352306 @default.
- W3202773844 creator A5063677700 @default.
- W3202773844 creator A5080311105 @default.
- W3202773844 date "2021-12-01" @default.
- W3202773844 modified "2023-09-27" @default.
- W3202773844 title "Nonstationary bubble shape determination in Electrical Impedance Tomography combining Gauss–Newton Optimization with particle filter" @default.
- W3202773844 cites W1963903329 @default.
- W3202773844 cites W1966710040 @default.
- W3202773844 cites W1968669537 @default.
- W3202773844 cites W1968936982 @default.
- W3202773844 cites W1971031128 @default.
- W3202773844 cites W1985084792 @default.
- W3202773844 cites W1992676433 @default.
- W3202773844 cites W2003816116 @default.
- W3202773844 cites W2006297613 @default.
- W3202773844 cites W2007436413 @default.
- W3202773844 cites W2034658223 @default.
- W3202773844 cites W2036250930 @default.
- W3202773844 cites W2041556066 @default.
- W3202773844 cites W2041993923 @default.
- W3202773844 cites W2052487889 @default.
- W3202773844 cites W2055473962 @default.
- W3202773844 cites W2080836989 @default.
- W3202773844 cites W2081220834 @default.
- W3202773844 cites W2087359803 @default.
- W3202773844 cites W2089280189 @default.
- W3202773844 cites W2093442954 @default.
- W3202773844 cites W2095534447 @default.
- W3202773844 cites W2098613108 @default.
- W3202773844 cites W2106616447 @default.
- W3202773844 cites W2107810166 @default.
- W3202773844 cites W2111805630 @default.
- W3202773844 cites W2112890043 @default.
- W3202773844 cites W2113003378 @default.
- W3202773844 cites W2141002303 @default.
- W3202773844 cites W2144594303 @default.
- W3202773844 cites W2160337655 @default.
- W3202773844 cites W2170164530 @default.
- W3202773844 cites W2343043990 @default.
- W3202773844 cites W2463333547 @default.
- W3202773844 cites W2527716650 @default.
- W3202773844 cites W2555235507 @default.
- W3202773844 cites W2616708684 @default.
- W3202773844 cites W2751313698 @default.
- W3202773844 cites W2759764994 @default.
- W3202773844 cites W2794321267 @default.
- W3202773844 cites W2890831921 @default.
- W3202773844 cites W2954414184 @default.
- W3202773844 cites W3013765061 @default.
- W3202773844 cites W3035212115 @default.
- W3202773844 cites W3036050196 @default.
- W3202773844 cites W3083447718 @default.
- W3202773844 cites W3092391369 @default.
- W3202773844 cites W3114501694 @default.
- W3202773844 cites W3115316403 @default.
- W3202773844 cites W3119628421 @default.
- W3202773844 cites W3122482465 @default.
- W3202773844 cites W3152586886 @default.
- W3202773844 doi "https://doi.org/10.1016/j.measurement.2021.110216" @default.
- W3202773844 hasPublicationYear "2021" @default.
- W3202773844 type Work @default.
- W3202773844 sameAs 3202773844 @default.
- W3202773844 citedByCount "8" @default.
- W3202773844 countsByYear W32027738442022 @default.
- W3202773844 countsByYear W32027738442023 @default.
- W3202773844 crossrefType "journal-article" @default.
- W3202773844 hasAuthorship W3202773844A5012576976 @default.
- W3202773844 hasAuthorship W3202773844A5034123415 @default.
- W3202773844 hasAuthorship W3202773844A5036937078 @default.
- W3202773844 hasAuthorship W3202773844A5047352306 @default.
- W3202773844 hasAuthorship W3202773844A5063677700 @default.
- W3202773844 hasAuthorship W3202773844A5080311105 @default.
- W3202773844 hasConcept C106131492 @default.
- W3202773844 hasConcept C120665830 @default.
- W3202773844 hasConcept C121332964 @default.
- W3202773844 hasConcept C155175808 @default.
- W3202773844 hasConcept C157915830 @default.
- W3202773844 hasConcept C161794534 @default.
- W3202773844 hasConcept C163716698 @default.
- W3202773844 hasConcept C17829176 @default.
- W3202773844 hasConcept C192562407 @default.
- W3202773844 hasConcept C24890656 @default.
- W3202773844 hasConcept C31972630 @default.
- W3202773844 hasConcept C41008148 @default.
- W3202773844 hasConcept C57879066 @default.
- W3202773844 hasConcept C62520636 @default.
- W3202773844 hasConceptScore W3202773844C106131492 @default.
- W3202773844 hasConceptScore W3202773844C120665830 @default.
- W3202773844 hasConceptScore W3202773844C121332964 @default.
- W3202773844 hasConceptScore W3202773844C155175808 @default.
- W3202773844 hasConceptScore W3202773844C157915830 @default.
- W3202773844 hasConceptScore W3202773844C161794534 @default.
- W3202773844 hasConceptScore W3202773844C163716698 @default.