Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202823781> ?p ?o ?g. }
- W3202823781 endingPage "110410" @default.
- W3202823781 startingPage "110410" @default.
- W3202823781 abstract "In the current work, the sol-gel synthesis method was used to synthesize both undoped and gallium (1%-Ga) doped TiO2 nanoparticles. The as-deposited materials were calcined at 400–500 °C with a temperature variation rate of 5 °C per minute. The crystallographic properties of the semiconductor materials were determined from X-ray diffraction (XRD) which showed the formation of anatase TiO2. The average crystallite sizes, determined from the widths of the XRD reflections, were 11 and 4 nm for undoped and Ga-doped TiO2, respectively. The materials were further studied by density functional theory with meta-generalized gradient approximation exchange–correlation functional. Supercell systems consisting of 24 and 48 atoms were created to form 12.5% and 6.25% Ga dopant substitution, respectively. These structures were optimized to obtain the ground state properties. Transmission electron microscopy showed polycrystalline, spherical powders, with grain sizes comparable to those found using XRD. The surface morphology of the doped TiO2 obtained from scanning electron microscopy showed an improved surface structure compared to pristine TiO2. Moreover, the electronic states of the materials were investigated using X-ray photoelectron spectroscopy. Energy dispersive X-ray spectroscopy verified the elemental composition of titanium, oxygen, and Ga present in the nanoparticles. The surface chemical bonds were analyzed by Fourier-transform infrared spectroscopy. Ultraviolet diffused reflectance spectra analysis was used to examine their optical properties. The experimentally obtained bandgaps of pristine and 1% Ga-doped TiO2 nanoparticles were 2.9 and 3.09 eV, respectively. The optical properties were further analyzed by computing the band structures and density of states using density functional theory. Similar to the experimental results, these electronic structures showed an increase in bandgap after 6.25% Ga incorporation. However, with 12.5% doping, there was a decrement in the bandgap. The analysis showed that, with an appropriate amount of substitution, Ga-doped TiO2 semiconductor material can be used in the electron transport layer and many other fields of photoelectric cells." @default.
- W3202823781 created "2021-10-11" @default.
- W3202823781 creator A5012502279 @default.
- W3202823781 creator A5012517995 @default.
- W3202823781 creator A5031497806 @default.
- W3202823781 creator A5038501680 @default.
- W3202823781 creator A5046638236 @default.
- W3202823781 creator A5077030533 @default.
- W3202823781 creator A5087717647 @default.
- W3202823781 date "2022-02-01" @default.
- W3202823781 modified "2023-10-18" @default.
- W3202823781 title "Investigation of structural, morphological, and optoelectronic properties of Ga-doped TiO2 nanoparticles for electron transport layer in solar cell applications: An experimental and theoretical study" @default.
- W3202823781 cites W1531692414 @default.
- W3202823781 cites W1563907284 @default.
- W3202823781 cites W1970942832 @default.
- W3202823781 cites W1975009686 @default.
- W3202823781 cites W1977180338 @default.
- W3202823781 cites W1983368700 @default.
- W3202823781 cites W1995977395 @default.
- W3202823781 cites W2000262394 @default.
- W3202823781 cites W2003891549 @default.
- W3202823781 cites W2014375444 @default.
- W3202823781 cites W2030327544 @default.
- W3202823781 cites W2031409217 @default.
- W3202823781 cites W2033262092 @default.
- W3202823781 cites W2081975029 @default.
- W3202823781 cites W2083739577 @default.
- W3202823781 cites W2090584735 @default.
- W3202823781 cites W2192388869 @default.
- W3202823781 cites W2346169968 @default.
- W3202823781 cites W2538101117 @default.
- W3202823781 cites W2593481485 @default.
- W3202823781 cites W2759335643 @default.
- W3202823781 cites W2792087050 @default.
- W3202823781 cites W2796883237 @default.
- W3202823781 cites W2810817311 @default.
- W3202823781 cites W2888349326 @default.
- W3202823781 cites W2902470264 @default.
- W3202823781 cites W2936630947 @default.
- W3202823781 cites W2964144188 @default.
- W3202823781 cites W2967092426 @default.
- W3202823781 cites W3041862258 @default.
- W3202823781 doi "https://doi.org/10.1016/j.jpcs.2021.110410" @default.
- W3202823781 hasPublicationYear "2022" @default.
- W3202823781 type Work @default.
- W3202823781 sameAs 3202823781 @default.
- W3202823781 citedByCount "2" @default.
- W3202823781 countsByYear W32028237812023 @default.
- W3202823781 crossrefType "journal-article" @default.
- W3202823781 hasAuthorship W3202823781A5012502279 @default.
- W3202823781 hasAuthorship W3202823781A5012517995 @default.
- W3202823781 hasAuthorship W3202823781A5031497806 @default.
- W3202823781 hasAuthorship W3202823781A5038501680 @default.
- W3202823781 hasAuthorship W3202823781A5046638236 @default.
- W3202823781 hasAuthorship W3202823781A5077030533 @default.
- W3202823781 hasAuthorship W3202823781A5087717647 @default.
- W3202823781 hasConcept C113196181 @default.
- W3202823781 hasConcept C121332964 @default.
- W3202823781 hasConcept C127413603 @default.
- W3202823781 hasConcept C137637335 @default.
- W3202823781 hasConcept C140676511 @default.
- W3202823781 hasConcept C146088050 @default.
- W3202823781 hasConcept C155672457 @default.
- W3202823781 hasConcept C156328458 @default.
- W3202823781 hasConcept C161790260 @default.
- W3202823781 hasConcept C171250308 @default.
- W3202823781 hasConcept C175708663 @default.
- W3202823781 hasConcept C185592680 @default.
- W3202823781 hasConcept C191897082 @default.
- W3202823781 hasConcept C191952053 @default.
- W3202823781 hasConcept C192562407 @default.
- W3202823781 hasConcept C2777402863 @default.
- W3202823781 hasConcept C2780824857 @default.
- W3202823781 hasConcept C32891209 @default.
- W3202823781 hasConcept C42360764 @default.
- W3202823781 hasConcept C43617362 @default.
- W3202823781 hasConcept C49040817 @default.
- W3202823781 hasConcept C55493867 @default.
- W3202823781 hasConcept C57863236 @default.
- W3202823781 hasConcept C62520636 @default.
- W3202823781 hasConcept C65165184 @default.
- W3202823781 hasConceptScore W3202823781C113196181 @default.
- W3202823781 hasConceptScore W3202823781C121332964 @default.
- W3202823781 hasConceptScore W3202823781C127413603 @default.
- W3202823781 hasConceptScore W3202823781C137637335 @default.
- W3202823781 hasConceptScore W3202823781C140676511 @default.
- W3202823781 hasConceptScore W3202823781C146088050 @default.
- W3202823781 hasConceptScore W3202823781C155672457 @default.
- W3202823781 hasConceptScore W3202823781C156328458 @default.
- W3202823781 hasConceptScore W3202823781C161790260 @default.
- W3202823781 hasConceptScore W3202823781C171250308 @default.
- W3202823781 hasConceptScore W3202823781C175708663 @default.
- W3202823781 hasConceptScore W3202823781C185592680 @default.
- W3202823781 hasConceptScore W3202823781C191897082 @default.
- W3202823781 hasConceptScore W3202823781C191952053 @default.
- W3202823781 hasConceptScore W3202823781C192562407 @default.
- W3202823781 hasConceptScore W3202823781C2777402863 @default.
- W3202823781 hasConceptScore W3202823781C2780824857 @default.