Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202846827> ?p ?o ?g. }
- W3202846827 abstract "Earlier work has shown that reusing experience from prior motion planning problems can improve the efficiency of similar, future motion planning queries. However, for robots with many degrees-of-freedom, these methods exhibit poor generalization across different environments and often require large datasets that are impractical to gather. We present SPARK and FLAME, two experience-based frameworks for sampling-based planning applicable to complex manipulators in 3D environments. Both combine samplers associated with features from a workspace decomposition into a global biased sampling distribution. SPARK decomposes the environment based on exact geometry while FLAME is more general, and uses an octree-based decomposition obtained from sensor data. We demonstrate the effectiveness of SPARK and FLAME on a real and simulated Fetch robot tasked with challenging pick-and-place manipulation problems. Our approaches can be trained incrementally and significantly improve performance with only a handful of examples, generalizing better over diverse tasks and environments as compared to prior approaches." @default.
- W3202846827 created "2021-10-11" @default.
- W3202846827 creator A5024993683 @default.
- W3202846827 creator A5030613546 @default.
- W3202846827 creator A5061640673 @default.
- W3202846827 creator A5067205988 @default.
- W3202846827 creator A5088789391 @default.
- W3202846827 date "2021-05-30" @default.
- W3202846827 modified "2023-09-30" @default.
- W3202846827 title "Learning Sampling Distributions Using Local 3D Workspace Decompositions for Motion Planning in High Dimensions" @default.
- W3202846827 cites W1424654272 @default.
- W3202846827 cites W1485661534 @default.
- W3202846827 cites W1532788009 @default.
- W3202846827 cites W1649062001 @default.
- W3202846827 cites W181534116 @default.
- W3202846827 cites W1971355878 @default.
- W3202846827 cites W1971458750 @default.
- W3202846827 cites W2038131922 @default.
- W3202846827 cites W2079148749 @default.
- W3202846827 cites W2101902009 @default.
- W3202846827 cites W2107535513 @default.
- W3202846827 cites W2109212155 @default.
- W3202846827 cites W2110762409 @default.
- W3202846827 cites W2116507931 @default.
- W3202846827 cites W2121562091 @default.
- W3202846827 cites W2133844819 @default.
- W3202846827 cites W2141279501 @default.
- W3202846827 cites W2141664020 @default.
- W3202846827 cites W2156459680 @default.
- W3202846827 cites W2166316739 @default.
- W3202846827 cites W2167458557 @default.
- W3202846827 cites W2171266831 @default.
- W3202846827 cites W2294594531 @default.
- W3202846827 cites W2397499736 @default.
- W3202846827 cites W2401467858 @default.
- W3202846827 cites W2792806200 @default.
- W3202846827 cites W2883982988 @default.
- W3202846827 cites W2922572893 @default.
- W3202846827 cites W2959125034 @default.
- W3202846827 cites W2962758608 @default.
- W3202846827 cites W2963439114 @default.
- W3202846827 cites W2963572779 @default.
- W3202846827 cites W2967184229 @default.
- W3202846827 cites W2967969632 @default.
- W3202846827 cites W3004207898 @default.
- W3202846827 cites W3090647410 @default.
- W3202846827 cites W3091091967 @default.
- W3202846827 cites W3091401032 @default.
- W3202846827 cites W3103497574 @default.
- W3202846827 cites W4366956087 @default.
- W3202846827 cites W89668600 @default.
- W3202846827 doi "https://doi.org/10.1109/icra48506.2021.9561104" @default.
- W3202846827 hasPublicationYear "2021" @default.
- W3202846827 type Work @default.
- W3202846827 sameAs 3202846827 @default.
- W3202846827 citedByCount "9" @default.
- W3202846827 countsByYear W32028468272022 @default.
- W3202846827 countsByYear W32028468272023 @default.
- W3202846827 crossrefType "proceedings-article" @default.
- W3202846827 hasAuthorship W3202846827A5024993683 @default.
- W3202846827 hasAuthorship W3202846827A5030613546 @default.
- W3202846827 hasAuthorship W3202846827A5061640673 @default.
- W3202846827 hasAuthorship W3202846827A5067205988 @default.
- W3202846827 hasAuthorship W3202846827A5088789391 @default.
- W3202846827 hasBestOaLocation W32028468272 @default.
- W3202846827 hasConcept C104114177 @default.
- W3202846827 hasConcept C105795698 @default.
- W3202846827 hasConcept C106131492 @default.
- W3202846827 hasConcept C121332964 @default.
- W3202846827 hasConcept C124681953 @default.
- W3202846827 hasConcept C134306372 @default.
- W3202846827 hasConcept C140779682 @default.
- W3202846827 hasConcept C141297171 @default.
- W3202846827 hasConcept C154945302 @default.
- W3202846827 hasConcept C177148314 @default.
- W3202846827 hasConcept C17744445 @default.
- W3202846827 hasConcept C18903297 @default.
- W3202846827 hasConcept C199360897 @default.
- W3202846827 hasConcept C199539241 @default.
- W3202846827 hasConcept C208081375 @default.
- W3202846827 hasConcept C2776359362 @default.
- W3202846827 hasConcept C2780598303 @default.
- W3202846827 hasConcept C2781215313 @default.
- W3202846827 hasConcept C31972630 @default.
- W3202846827 hasConcept C33923547 @default.
- W3202846827 hasConcept C41008148 @default.
- W3202846827 hasConcept C58581272 @default.
- W3202846827 hasConcept C62520636 @default.
- W3202846827 hasConcept C81074085 @default.
- W3202846827 hasConcept C86803240 @default.
- W3202846827 hasConcept C90509273 @default.
- W3202846827 hasConcept C94625758 @default.
- W3202846827 hasConceptScore W3202846827C104114177 @default.
- W3202846827 hasConceptScore W3202846827C105795698 @default.
- W3202846827 hasConceptScore W3202846827C106131492 @default.
- W3202846827 hasConceptScore W3202846827C121332964 @default.
- W3202846827 hasConceptScore W3202846827C124681953 @default.
- W3202846827 hasConceptScore W3202846827C134306372 @default.
- W3202846827 hasConceptScore W3202846827C140779682 @default.
- W3202846827 hasConceptScore W3202846827C141297171 @default.