Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202851454> ?p ?o ?g. }
- W3202851454 abstract "Over the past decades, approaches for diagnosing and treating cancer have seen significant improvement. However, the variability of patient and tumor characteristics has limited progress on methods for prognosis prediction. The development of high-throughput omics technologies now provides multiple approaches for characterizing tumors. Although a large number of published studies have focused on integration of multi-omics data and use of pathway-level models for cancer prognosis prediction, there still exists a gap of knowledge regarding the prognostic landscape across multi-omics data for multiple cancer types using both gene-level and pathway-level predictors.In this study, we systematically evaluated three often available types of omics data (gene expression, copy number variation and somatic point mutation) covering both DNA-level and RNA-level features. We evaluated the landscape of predictive performance of these three omics modalities for 33 cancer types in the TCGA using a Lasso or Group Lasso-penalized Cox model and either gene or pathway level predictors.We constructed the prognostic landscape using three types of omics data for 33 cancer types on both the gene and pathway levels. Based on this landscape, we found that predictive performance is cancer type dependent and we also highlighted the cancer types and omics modalities that support the most accurate prognostic models. In general, models estimated on gene expression data provide the best predictive performance on either gene or pathway level and adding copy number variation or somatic point mutation data to gene expression data does not improve predictive performance, with some exceptional cohorts including low grade glioma and thyroid cancer. In general, pathway-level models have better interpretative performance, higher stability and smaller model size across multiple cancer types and omics data types relative to gene-level models.Based on this landscape and comprehensively comparison, models estimated on gene expression data provide the best predictive performance on either gene or pathway level. Pathway-level models have better interpretative performance, higher stability and smaller model size relative to gene-level models." @default.
- W3202851454 created "2021-10-11" @default.
- W3202851454 creator A5028989565 @default.
- W3202851454 creator A5048516597 @default.
- W3202851454 creator A5080933903 @default.
- W3202851454 date "2021-09-25" @default.
- W3202851454 modified "2023-09-26" @default.
- W3202851454 title "Pan-cancer evaluation of gene expression and somatic alteration data for cancer prognosis prediction" @default.
- W3202851454 cites W1917103373 @default.
- W3202851454 cites W1966580149 @default.
- W3202851454 cites W1966976587 @default.
- W3202851454 cites W1968156993 @default.
- W3202851454 cites W1973025982 @default.
- W3202851454 cites W1975088650 @default.
- W3202851454 cites W1975879668 @default.
- W3202851454 cites W1981509058 @default.
- W3202851454 cites W1990225349 @default.
- W3202851454 cites W1992173627 @default.
- W3202851454 cites W1996811244 @default.
- W3202851454 cites W2005027142 @default.
- W3202851454 cites W2026805792 @default.
- W3202851454 cites W2030678916 @default.
- W3202851454 cites W2038247960 @default.
- W3202851454 cites W2043576276 @default.
- W3202851454 cites W2044702943 @default.
- W3202851454 cites W2047930883 @default.
- W3202851454 cites W2048862998 @default.
- W3202851454 cites W2059918712 @default.
- W3202851454 cites W2059995794 @default.
- W3202851454 cites W2084139018 @default.
- W3202851454 cites W2089838152 @default.
- W3202851454 cites W2091015783 @default.
- W3202851454 cites W2097360283 @default.
- W3202851454 cites W2108408366 @default.
- W3202851454 cites W2118782378 @default.
- W3202851454 cites W2121906867 @default.
- W3202851454 cites W2129359631 @default.
- W3202851454 cites W2129921538 @default.
- W3202851454 cites W2130410032 @default.
- W3202851454 cites W2133615432 @default.
- W3202851454 cites W2135577623 @default.
- W3202851454 cites W2138019504 @default.
- W3202851454 cites W2138155367 @default.
- W3202851454 cites W2144775044 @default.
- W3202851454 cites W2151199601 @default.
- W3202851454 cites W2157302214 @default.
- W3202851454 cites W2157582398 @default.
- W3202851454 cites W2159547203 @default.
- W3202851454 cites W2159707944 @default.
- W3202851454 cites W2160450758 @default.
- W3202851454 cites W2168517816 @default.
- W3202851454 cites W2169846247 @default.
- W3202851454 cites W2171304795 @default.
- W3202851454 cites W2176699305 @default.
- W3202851454 cites W2214074259 @default.
- W3202851454 cites W2760556503 @default.
- W3202851454 cites W2778689912 @default.
- W3202851454 cites W2803358834 @default.
- W3202851454 cites W2898789672 @default.
- W3202851454 cites W2900658105 @default.
- W3202851454 cites W2921485464 @default.
- W3202851454 cites W2936774640 @default.
- W3202851454 cites W2950039952 @default.
- W3202851454 cites W2950517073 @default.
- W3202851454 cites W2981494293 @default.
- W3202851454 cites W3010798954 @default.
- W3202851454 cites W3011468076 @default.
- W3202851454 cites W3015936658 @default.
- W3202851454 cites W3124158594 @default.
- W3202851454 cites W4294214983 @default.
- W3202851454 cites W4294541781 @default.
- W3202851454 doi "https://doi.org/10.1186/s12885-021-08796-3" @default.
- W3202851454 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8467202" @default.
- W3202851454 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34563154" @default.
- W3202851454 hasPublicationYear "2021" @default.
- W3202851454 type Work @default.
- W3202851454 sameAs 3202851454 @default.
- W3202851454 citedByCount "3" @default.
- W3202851454 countsByYear W32028514542022 @default.
- W3202851454 crossrefType "journal-article" @default.
- W3202851454 hasAuthorship W3202851454A5028989565 @default.
- W3202851454 hasAuthorship W3202851454A5048516597 @default.
- W3202851454 hasAuthorship W3202851454A5080933903 @default.
- W3202851454 hasBestOaLocation W32028514541 @default.
- W3202851454 hasConcept C104317684 @default.
- W3202851454 hasConcept C120821319 @default.
- W3202851454 hasConcept C121608353 @default.
- W3202851454 hasConcept C126322002 @default.
- W3202851454 hasConcept C136764020 @default.
- W3202851454 hasConcept C141231307 @default.
- W3202851454 hasConcept C143998085 @default.
- W3202851454 hasConcept C157585117 @default.
- W3202851454 hasConcept C189206191 @default.
- W3202851454 hasConcept C2780140570 @default.
- W3202851454 hasConcept C37616216 @default.
- W3202851454 hasConcept C41008148 @default.
- W3202851454 hasConcept C50382708 @default.
- W3202851454 hasConcept C54355233 @default.
- W3202851454 hasConcept C60644358 @default.
- W3202851454 hasConcept C70721500 @default.