Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202851937> ?p ?o ?g. }
- W3202851937 abstract "Background: Population-based data on the risk assessment of newly diagnosed cervical cancer patients' bone metastasis (CCBM) are lacking. This study aimed to develop various predictive models to assess the risk of bone metastasis via machine learning algorithms. Materials and Methods: We retrospectively reviewed the CCBM patients from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute to risk factors of the presence of bone metastasis. Clinical usefulness was assessed by Akaike information criteria (AIC) and multiple machine learning algorithms based predictive models. Concordance index (C-index) and receiver operating characteristic (ROC) curve were used to define the predictive and discriminatory capacity of predictive models. Results: A total of 16 candidate variables were included to develop predictive models for bone metastasis by machine learning. The areas under the ROC curve (AUCs) of the random forest model (RF), generalized linear model (GL), support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), artificial neutral network (ANN), decision tree (DT), and naive bayesian model (NBM) ranged from 0.85 to 0.93. The RF model with 10 variables was developed as the optimal predictive model. The weight of variables indicated the top seven factors were organ-site metastasis (liver, brain, and lung), TNM stage and age. Conclusions: Multiple machine learning based predictive models were developed to identify risk of bone metastasis in cervical cancer patients. By incorporating clinical characteristics and other candidate variables showed robust risk stratification for CCBM patients, and the RF predictive model performed best among these predictive models." @default.
- W3202851937 created "2021-10-11" @default.
- W3202851937 creator A5005424415 @default.
- W3202851937 creator A5014606927 @default.
- W3202851937 creator A5029733556 @default.
- W3202851937 creator A5029911700 @default.
- W3202851937 creator A5033279980 @default.
- W3202851937 creator A5054785361 @default.
- W3202851937 creator A5056168495 @default.
- W3202851937 creator A5072731127 @default.
- W3202851937 date "2021-10-05" @default.
- W3202851937 modified "2023-09-23" @default.
- W3202851937 title "Risk Assessment of Bone Metastasis for Cervical Cancer Patients by Multiple Models: A Large Population Based Real-World Study" @default.
- W3202851937 cites W1958189363 @default.
- W3202851937 cites W1964654097 @default.
- W3202851937 cites W1983760682 @default.
- W3202851937 cites W1985651416 @default.
- W3202851937 cites W1991832373 @default.
- W3202851937 cites W1993912298 @default.
- W3202851937 cites W2004128192 @default.
- W3202851937 cites W2045030989 @default.
- W3202851937 cites W2053167080 @default.
- W3202851937 cites W2053787128 @default.
- W3202851937 cites W2077158601 @default.
- W3202851937 cites W2087629290 @default.
- W3202851937 cites W2098319794 @default.
- W3202851937 cites W2133147483 @default.
- W3202851937 cites W2134440549 @default.
- W3202851937 cites W2148458500 @default.
- W3202851937 cites W2148560419 @default.
- W3202851937 cites W2154286581 @default.
- W3202851937 cites W2166339706 @default.
- W3202851937 cites W2182113531 @default.
- W3202851937 cites W2370300800 @default.
- W3202851937 cites W2467322644 @default.
- W3202851937 cites W2469746617 @default.
- W3202851937 cites W2595711623 @default.
- W3202851937 cites W2611907938 @default.
- W3202851937 cites W2790312749 @default.
- W3202851937 cites W3031421417 @default.
- W3202851937 cites W4211097225 @default.
- W3202851937 cites W4243150065 @default.
- W3202851937 doi "https://doi.org/10.3389/fmed.2021.725298" @default.
- W3202851937 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8523790" @default.
- W3202851937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34676225" @default.
- W3202851937 hasPublicationYear "2021" @default.
- W3202851937 type Work @default.
- W3202851937 sameAs 3202851937 @default.
- W3202851937 citedByCount "3" @default.
- W3202851937 countsByYear W32028519372022 @default.
- W3202851937 countsByYear W32028519372023 @default.
- W3202851937 crossrefType "journal-article" @default.
- W3202851937 hasAuthorship W3202851937A5005424415 @default.
- W3202851937 hasAuthorship W3202851937A5014606927 @default.
- W3202851937 hasAuthorship W3202851937A5029733556 @default.
- W3202851937 hasAuthorship W3202851937A5029911700 @default.
- W3202851937 hasAuthorship W3202851937A5033279980 @default.
- W3202851937 hasAuthorship W3202851937A5054785361 @default.
- W3202851937 hasAuthorship W3202851937A5056168495 @default.
- W3202851937 hasAuthorship W3202851937A5072731127 @default.
- W3202851937 hasBestOaLocation W32028519371 @default.
- W3202851937 hasConcept C119857082 @default.
- W3202851937 hasConcept C121608353 @default.
- W3202851937 hasConcept C12267149 @default.
- W3202851937 hasConcept C126322002 @default.
- W3202851937 hasConcept C126674687 @default.
- W3202851937 hasConcept C143998085 @default.
- W3202851937 hasConcept C154945302 @default.
- W3202851937 hasConcept C160798450 @default.
- W3202851937 hasConcept C169258074 @default.
- W3202851937 hasConcept C27181475 @default.
- W3202851937 hasConcept C2777783956 @default.
- W3202851937 hasConcept C2779013556 @default.
- W3202851937 hasConcept C2908647359 @default.
- W3202851937 hasConcept C41008148 @default.
- W3202851937 hasConcept C45804977 @default.
- W3202851937 hasConcept C58471807 @default.
- W3202851937 hasConcept C71924100 @default.
- W3202851937 hasConcept C84525736 @default.
- W3202851937 hasConcept C99454951 @default.
- W3202851937 hasConceptScore W3202851937C119857082 @default.
- W3202851937 hasConceptScore W3202851937C121608353 @default.
- W3202851937 hasConceptScore W3202851937C12267149 @default.
- W3202851937 hasConceptScore W3202851937C126322002 @default.
- W3202851937 hasConceptScore W3202851937C126674687 @default.
- W3202851937 hasConceptScore W3202851937C143998085 @default.
- W3202851937 hasConceptScore W3202851937C154945302 @default.
- W3202851937 hasConceptScore W3202851937C160798450 @default.
- W3202851937 hasConceptScore W3202851937C169258074 @default.
- W3202851937 hasConceptScore W3202851937C27181475 @default.
- W3202851937 hasConceptScore W3202851937C2777783956 @default.
- W3202851937 hasConceptScore W3202851937C2779013556 @default.
- W3202851937 hasConceptScore W3202851937C2908647359 @default.
- W3202851937 hasConceptScore W3202851937C41008148 @default.
- W3202851937 hasConceptScore W3202851937C45804977 @default.
- W3202851937 hasConceptScore W3202851937C58471807 @default.
- W3202851937 hasConceptScore W3202851937C71924100 @default.
- W3202851937 hasConceptScore W3202851937C84525736 @default.
- W3202851937 hasConceptScore W3202851937C99454951 @default.
- W3202851937 hasLocation W32028519371 @default.