Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202895305> ?p ?o ?g. }
- W3202895305 abstract "Deep learning, accounting for the use of an elaborate neural network, has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present work, we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks: Long Short-Term Memory(LSTM) and Deep Residual Network(ResNet), in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems. By taking the dynamics of Bose-Einstein condensates in a double-well potential as an example, we show that our new method makes a high efficient pre-learning and a high-fidelity prediction about the whole dynamics. This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved by a single network in the case of direct learning. Our method can be applied for simulating complex cooperative dynamics in a system with fast multiple-frequency oscillations with the aid of auxiliary spectrum analysis." @default.
- W3202895305 created "2021-10-11" @default.
- W3202895305 creator A5004836994 @default.
- W3202895305 creator A5007676532 @default.
- W3202895305 creator A5012719636 @default.
- W3202895305 creator A5028948842 @default.
- W3202895305 date "2021-09-20" @default.
- W3202895305 modified "2023-10-10" @default.
- W3202895305 title "Revisiting the dynamics of Bose-Einstein condensates in a double well by deep learning with a hybrid network" @default.
- W3202895305 cites W2000036838 @default.
- W3202895305 cites W2002294478 @default.
- W3202895305 cites W2016867014 @default.
- W3202895305 cites W2019062653 @default.
- W3202895305 cites W2019658260 @default.
- W3202895305 cites W2023285495 @default.
- W3202895305 cites W2054558389 @default.
- W3202895305 cites W2059222326 @default.
- W3202895305 cites W2062984562 @default.
- W3202895305 cites W2064675550 @default.
- W3202895305 cites W2072484914 @default.
- W3202895305 cites W2103496339 @default.
- W3202895305 cites W2112796928 @default.
- W3202895305 cites W2136922672 @default.
- W3202895305 cites W2194775991 @default.
- W3202895305 cites W2337082154 @default.
- W3202895305 cites W2419175238 @default.
- W3202895305 cites W2521267242 @default.
- W3202895305 cites W2531147647 @default.
- W3202895305 cites W2593485060 @default.
- W3202895305 cites W2610895655 @default.
- W3202895305 cites W2734725104 @default.
- W3202895305 cites W2750673150 @default.
- W3202895305 cites W2762738966 @default.
- W3202895305 cites W2769747699 @default.
- W3202895305 cites W2891187261 @default.
- W3202895305 cites W2895069928 @default.
- W3202895305 cites W2895136849 @default.
- W3202895305 cites W2922120071 @default.
- W3202895305 cites W2922635029 @default.
- W3202895305 cites W2945748512 @default.
- W3202895305 cites W2962914239 @default.
- W3202895305 cites W2964065884 @default.
- W3202895305 cites W2964174319 @default.
- W3202895305 cites W2964448830 @default.
- W3202895305 cites W3000650862 @default.
- W3202895305 cites W3001466080 @default.
- W3202895305 cites W3005786300 @default.
- W3202895305 cites W3006857755 @default.
- W3202895305 cites W3035785882 @default.
- W3202895305 cites W3102320711 @default.
- W3202895305 cites W3103008937 @default.
- W3202895305 cites W3104481216 @default.
- W3202895305 cites W3120295012 @default.
- W3202895305 cites W4252713891 @default.
- W3202895305 doi "https://doi.org/10.1007/s11467-021-1111-8" @default.
- W3202895305 hasPublicationYear "2021" @default.
- W3202895305 type Work @default.
- W3202895305 sameAs 3202895305 @default.
- W3202895305 citedByCount "1" @default.
- W3202895305 countsByYear W32028953052022 @default.
- W3202895305 crossrefType "journal-article" @default.
- W3202895305 hasAuthorship W3202895305A5004836994 @default.
- W3202895305 hasAuthorship W3202895305A5007676532 @default.
- W3202895305 hasAuthorship W3202895305A5012719636 @default.
- W3202895305 hasAuthorship W3202895305A5028948842 @default.
- W3202895305 hasBestOaLocation W32028953052 @default.
- W3202895305 hasConcept C108583219 @default.
- W3202895305 hasConcept C113364801 @default.
- W3202895305 hasConcept C11413529 @default.
- W3202895305 hasConcept C121332964 @default.
- W3202895305 hasConcept C121864883 @default.
- W3202895305 hasConcept C145912823 @default.
- W3202895305 hasConcept C154945302 @default.
- W3202895305 hasConcept C155512373 @default.
- W3202895305 hasConcept C24890656 @default.
- W3202895305 hasConcept C2776459999 @default.
- W3202895305 hasConcept C37589322 @default.
- W3202895305 hasConcept C41008148 @default.
- W3202895305 hasConcept C50644808 @default.
- W3202895305 hasConcept C62520636 @default.
- W3202895305 hasConcept C76155785 @default.
- W3202895305 hasConceptScore W3202895305C108583219 @default.
- W3202895305 hasConceptScore W3202895305C113364801 @default.
- W3202895305 hasConceptScore W3202895305C11413529 @default.
- W3202895305 hasConceptScore W3202895305C121332964 @default.
- W3202895305 hasConceptScore W3202895305C121864883 @default.
- W3202895305 hasConceptScore W3202895305C145912823 @default.
- W3202895305 hasConceptScore W3202895305C154945302 @default.
- W3202895305 hasConceptScore W3202895305C155512373 @default.
- W3202895305 hasConceptScore W3202895305C24890656 @default.
- W3202895305 hasConceptScore W3202895305C2776459999 @default.
- W3202895305 hasConceptScore W3202895305C37589322 @default.
- W3202895305 hasConceptScore W3202895305C41008148 @default.
- W3202895305 hasConceptScore W3202895305C50644808 @default.
- W3202895305 hasConceptScore W3202895305C62520636 @default.
- W3202895305 hasConceptScore W3202895305C76155785 @default.
- W3202895305 hasIssue "2" @default.
- W3202895305 hasLocation W32028953051 @default.
- W3202895305 hasLocation W32028953052 @default.
- W3202895305 hasOpenAccess W3202895305 @default.