Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202911331> ?p ?o ?g. }
- W3202911331 endingPage "132467" @default.
- W3202911331 startingPage "132455" @default.
- W3202911331 abstract "The authors of this work propose a deep learning-based fault detection model that can be implemented in the field of plastic injection molding. Compared to conventional approaches to fault detection in this domain, recent deep learning approaches prove useful for on-site problems involving complex underlying dynamics with a large number of variables. In addition, the advent of advanced sensors that generate data types in multiple modalities prompts the need for multimodal learning with deep neural networks to detect faults. This process is able to facilitate information from various modalities in an end-to-end learning fashion. The proposed deep learning-based approach opts for an early fusion scheme, in which the low-level feature representations of modalities are combined. A case study involving real-world data, obtained from a car parts company and related to a car window side molding process, validates that the proposed model outperforms late fusion methods and conventional models in solving the problem." @default.
- W3202911331 created "2021-10-11" @default.
- W3202911331 creator A5001125586 @default.
- W3202911331 creator A5044356513 @default.
- W3202911331 creator A5048352340 @default.
- W3202911331 creator A5049525333 @default.
- W3202911331 creator A5049916051 @default.
- W3202911331 date "2021-01-01" @default.
- W3202911331 modified "2023-10-17" @default.
- W3202911331 title "A Multimodal Deep Learning-Based Fault Detection Model for a Plastic Injection Molding Process" @default.
- W3202911331 cites W1555767263 @default.
- W3202911331 cites W1849277567 @default.
- W3202911331 cites W1935466852 @default.
- W3202911331 cites W1963831921 @default.
- W3202911331 cites W1974717100 @default.
- W3202911331 cites W1978289332 @default.
- W3202911331 cites W1994101233 @default.
- W3202911331 cites W1996478295 @default.
- W3202911331 cites W2014431515 @default.
- W3202911331 cites W2015371589 @default.
- W3202911331 cites W2039226061 @default.
- W3202911331 cites W2055019723 @default.
- W3202911331 cites W2064675550 @default.
- W3202911331 cites W2091921805 @default.
- W3202911331 cites W2093733173 @default.
- W3202911331 cites W2132733568 @default.
- W3202911331 cites W2137559939 @default.
- W3202911331 cites W2139833307 @default.
- W3202911331 cites W2143783457 @default.
- W3202911331 cites W2154014663 @default.
- W3202911331 cites W2155867868 @default.
- W3202911331 cites W2157331557 @default.
- W3202911331 cites W2165698076 @default.
- W3202911331 cites W2195459533 @default.
- W3202911331 cites W2246303929 @default.
- W3202911331 cites W2464234006 @default.
- W3202911331 cites W2524083015 @default.
- W3202911331 cites W2525648609 @default.
- W3202911331 cites W2526421605 @default.
- W3202911331 cites W2555077524 @default.
- W3202911331 cites W2588755956 @default.
- W3202911331 cites W2594332903 @default.
- W3202911331 cites W2598525681 @default.
- W3202911331 cites W2619383789 @default.
- W3202911331 cites W275514813 @default.
- W3202911331 cites W2767290858 @default.
- W3202911331 cites W2769634371 @default.
- W3202911331 cites W2777460464 @default.
- W3202911331 cites W2795498805 @default.
- W3202911331 cites W2809933567 @default.
- W3202911331 cites W2883342032 @default.
- W3202911331 cites W2884561390 @default.
- W3202911331 cites W2887791157 @default.
- W3202911331 cites W2891977434 @default.
- W3202911331 cites W2892035503 @default.
- W3202911331 cites W2900601594 @default.
- W3202911331 cites W2904138018 @default.
- W3202911331 cites W2909621870 @default.
- W3202911331 cites W2913159621 @default.
- W3202911331 cites W2919115771 @default.
- W3202911331 cites W2942188857 @default.
- W3202911331 cites W2943459538 @default.
- W3202911331 cites W2945896938 @default.
- W3202911331 cites W2946165673 @default.
- W3202911331 cites W2946530240 @default.
- W3202911331 cites W2950694741 @default.
- W3202911331 cites W2955265224 @default.
- W3202911331 cites W2955457329 @default.
- W3202911331 cites W2970586066 @default.
- W3202911331 cites W2978157082 @default.
- W3202911331 cites W2992833933 @default.
- W3202911331 cites W2996020411 @default.
- W3202911331 cites W3017264588 @default.
- W3202911331 cites W3021558250 @default.
- W3202911331 cites W3023215784 @default.
- W3202911331 cites W3027507763 @default.
- W3202911331 cites W3048462146 @default.
- W3202911331 cites W3084624816 @default.
- W3202911331 cites W3084983148 @default.
- W3202911331 cites W3093638804 @default.
- W3202911331 cites W3095886304 @default.
- W3202911331 cites W3101040771 @default.
- W3202911331 cites W3102041842 @default.
- W3202911331 cites W3115025749 @default.
- W3202911331 cites W3157156266 @default.
- W3202911331 cites W3162674368 @default.
- W3202911331 cites W3169297916 @default.
- W3202911331 cites W3179595367 @default.
- W3202911331 cites W3182392194 @default.
- W3202911331 cites W4299165932 @default.
- W3202911331 cites W571200655 @default.
- W3202911331 cites W1997588069 @default.
- W3202911331 doi "https://doi.org/10.1109/access.2021.3115665" @default.
- W3202911331 hasPublicationYear "2021" @default.
- W3202911331 type Work @default.
- W3202911331 sameAs 3202911331 @default.
- W3202911331 citedByCount "7" @default.
- W3202911331 countsByYear W32029113312022 @default.