Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202924780> ?p ?o ?g. }
- W3202924780 endingPage "5371" @default.
- W3202924780 startingPage "5363" @default.
- W3202924780 abstract "Predicting the risk of malignant arrhythmias (MA) in hospitalized patients with heart failure (HF) is challenging. Machine learning (ML) can handle a large volume of complex data more effectively than traditional statistical methods. This study explored the feasibility of ML methods for predicting the risk of MA in hospitalized HF patients.We evaluated the baseline data and MA events of 2794 hospitalized HF patients in the HF cohort in Anhui Province and randomly divided the study population into training and validation sets in a 7:3 ratio. The Lasso-logistic regression, multivariate adaptive regression splines (MARS), classification and regression tree (CART), random forest (RF), and eXtreme gradient boosting (XGBoost) algorithms were used to construct risk prediction models in the training set, and model performance was verified in the validation set. The area under the receiver operating characteristic curve (AUC) and Brier score were employed to evaluate the discrimination and calibration of the model, respectively. Clinical utility of the Lasso-logistic regression model was analysed using decision curve analysis (DCA). The median (Q1, Q3) age of the study population was 70 (61, 77) years, and 39.5% were female. MA events occurred in 117 patients (4.2%) during hospitalization. In the training set (n = 1964), the AUC of the XGBoost model was 0.998 [95% confidence interval (CI) 0.997-1.000], which was higher than the other models (all P < 0.001). In the validation set (n = 830), there was no significant difference in AUC of Lasso-logistic model 1 [AUC: 0.867 (95% CI 0.819-0.915)], Lasso-logistic model 2 [AUC: 0.828 (95% CI 0.764-0.892)], MARS model [AUC: 0.852 (95% CI 0.793-0.910)], RF model [AUC: 0.804 (95% CI 0.726-0.881)], and XGBoost model [AUC: 0.864 (95% CI 0.810-0.918); all P > 0.05], which were higher than that of CART model [AUC: 0.743 (95% CI 0.661-0.824); all P < 0.05]. Brier scores for all prediction models were less than 0.05. DCA results showed that the Lasso-logistic model had a net clinical benefit. Oral antiarrhythmic drug, left bundle branch block, serum magnesium, d-dimer, and random blood glucose were significant predictors in half or more of the models.The current study findings suggest that ML models based on the Lasso-logistic regression, MARS, RF, and XGBoost algorithms can effectively predict the risk of MA in hospitalized HF patients. The Lasso-logistic model had better clinical interpretability and ease of use than the other models." @default.
- W3202924780 created "2021-10-11" @default.
- W3202924780 creator A5004449255 @default.
- W3202924780 creator A5013879989 @default.
- W3202924780 creator A5029695887 @default.
- W3202924780 creator A5029740323 @default.
- W3202924780 creator A5032589604 @default.
- W3202924780 creator A5037707081 @default.
- W3202924780 creator A5050229316 @default.
- W3202924780 creator A5062186674 @default.
- W3202924780 creator A5066676991 @default.
- W3202924780 creator A5080387874 @default.
- W3202924780 date "2021-09-28" @default.
- W3202924780 modified "2023-10-18" @default.
- W3202924780 title "Machine learning‐based risk prediction of malignant arrhythmia in hospitalized patients with heart failure" @default.
- W3202924780 cites W1826470798 @default.
- W3202924780 cites W1989333671 @default.
- W3202924780 cites W2013009184 @default.
- W3202924780 cites W2090526579 @default.
- W3202924780 cites W2102201073 @default.
- W3202924780 cites W2103679597 @default.
- W3202924780 cites W2158921203 @default.
- W3202924780 cites W2279560624 @default.
- W3202924780 cites W2519523583 @default.
- W3202924780 cites W2562988570 @default.
- W3202924780 cites W2763562934 @default.
- W3202924780 cites W2796925233 @default.
- W3202924780 cites W2955694212 @default.
- W3202924780 cites W2979638097 @default.
- W3202924780 cites W2979762289 @default.
- W3202924780 cites W2985220169 @default.
- W3202924780 cites W2990255056 @default.
- W3202924780 cites W2990309311 @default.
- W3202924780 cites W2999600747 @default.
- W3202924780 cites W3012343632 @default.
- W3202924780 cites W3042698632 @default.
- W3202924780 cites W3046177958 @default.
- W3202924780 cites W3113344507 @default.
- W3202924780 cites W3117475623 @default.
- W3202924780 cites W3126744581 @default.
- W3202924780 cites W3202924780 @default.
- W3202924780 cites W4292497465 @default.
- W3202924780 doi "https://doi.org/10.1002/ehf2.13627" @default.
- W3202924780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34585531" @default.
- W3202924780 hasPublicationYear "2021" @default.
- W3202924780 type Work @default.
- W3202924780 sameAs 3202924780 @default.
- W3202924780 citedByCount "8" @default.
- W3202924780 countsByYear W32029247802021 @default.
- W3202924780 countsByYear W32029247802022 @default.
- W3202924780 countsByYear W32029247802023 @default.
- W3202924780 crossrefType "journal-article" @default.
- W3202924780 hasAuthorship W3202924780A5004449255 @default.
- W3202924780 hasAuthorship W3202924780A5013879989 @default.
- W3202924780 hasAuthorship W3202924780A5029695887 @default.
- W3202924780 hasAuthorship W3202924780A5029740323 @default.
- W3202924780 hasAuthorship W3202924780A5032589604 @default.
- W3202924780 hasAuthorship W3202924780A5037707081 @default.
- W3202924780 hasAuthorship W3202924780A5050229316 @default.
- W3202924780 hasAuthorship W3202924780A5062186674 @default.
- W3202924780 hasAuthorship W3202924780A5066676991 @default.
- W3202924780 hasAuthorship W3202924780A5080387874 @default.
- W3202924780 hasBestOaLocation W32029247803 @default.
- W3202924780 hasConcept C105795698 @default.
- W3202924780 hasConcept C119857082 @default.
- W3202924780 hasConcept C126322002 @default.
- W3202924780 hasConcept C136764020 @default.
- W3202924780 hasConcept C151956035 @default.
- W3202924780 hasConcept C152877465 @default.
- W3202924780 hasConcept C154945302 @default.
- W3202924780 hasConcept C161584116 @default.
- W3202924780 hasConcept C207386681 @default.
- W3202924780 hasConcept C2776820930 @default.
- W3202924780 hasConcept C2908647359 @default.
- W3202924780 hasConcept C33923547 @default.
- W3202924780 hasConcept C35405484 @default.
- W3202924780 hasConcept C37616216 @default.
- W3202924780 hasConcept C41008148 @default.
- W3202924780 hasConcept C44249647 @default.
- W3202924780 hasConcept C44882253 @default.
- W3202924780 hasConcept C58471807 @default.
- W3202924780 hasConcept C64946054 @default.
- W3202924780 hasConcept C71924100 @default.
- W3202924780 hasConcept C99454951 @default.
- W3202924780 hasConceptScore W3202924780C105795698 @default.
- W3202924780 hasConceptScore W3202924780C119857082 @default.
- W3202924780 hasConceptScore W3202924780C126322002 @default.
- W3202924780 hasConceptScore W3202924780C136764020 @default.
- W3202924780 hasConceptScore W3202924780C151956035 @default.
- W3202924780 hasConceptScore W3202924780C152877465 @default.
- W3202924780 hasConceptScore W3202924780C154945302 @default.
- W3202924780 hasConceptScore W3202924780C161584116 @default.
- W3202924780 hasConceptScore W3202924780C207386681 @default.
- W3202924780 hasConceptScore W3202924780C2776820930 @default.
- W3202924780 hasConceptScore W3202924780C2908647359 @default.
- W3202924780 hasConceptScore W3202924780C33923547 @default.
- W3202924780 hasConceptScore W3202924780C35405484 @default.
- W3202924780 hasConceptScore W3202924780C37616216 @default.