Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202929541> ?p ?o ?g. }
- W3202929541 abstract "Summary Malware is a constant threat to the safety of the public Internet and private networks. It also affects the security of endpoint devices. An infected endpoint device can take part in aggressive or slow distributed denial of service attacks globally. Polymorphic malware has rendered traditional signature‐based detection ineffective. Hence the efforts to identify malware have been focused on behavioral modeling to identify and classify malware. This behavioral identification paved the way for artificial intelligence (AI) in cybersecurity. AI can detect a zero‐day attack and malware, but it suffers from several false positives. This article presents an extensive analysis of traditional and AI‐based methods for malware detection and related challenges. AI is vulnerable to attacks, such as dataset poisoning and adversarial data input, which can reduce model accuracy and increase false negatives. AI has helped to improve malware detection and reduce manual work through automation of feature extraction and feature selection. It is also beneficial to create models that are less prone to malware variations and capture the malicious behavior holistically. This article explores the transition of malware detection from traditional to AI‐based techniques. Furthermore, it also explains how some conventional approaches are still relevant today in terms of detection speed." @default.
- W3202929541 created "2021-10-11" @default.
- W3202929541 creator A5021779384 @default.
- W3202929541 creator A5036721487 @default.
- W3202929541 creator A5038478503 @default.
- W3202929541 creator A5074699763 @default.
- W3202929541 date "2021-09-28" @default.
- W3202929541 modified "2023-09-24" @default.
- W3202929541 title "Toward accurate and intelligent detection of malware" @default.
- W3202929541 cites W1544837488 @default.
- W3202929541 cites W1552949272 @default.
- W3202929541 cites W1583484179 @default.
- W3202929541 cites W1893133781 @default.
- W3202929541 cites W1916732574 @default.
- W3202929541 cites W1973403081 @default.
- W3202929541 cites W2071289869 @default.
- W3202929541 cites W2076952382 @default.
- W3202929541 cites W2088503757 @default.
- W3202929541 cites W2091088253 @default.
- W3202929541 cites W2111216264 @default.
- W3202929541 cites W2120418828 @default.
- W3202929541 cites W2132874238 @default.
- W3202929541 cites W2148542813 @default.
- W3202929541 cites W2151703673 @default.
- W3202929541 cites W2154529672 @default.
- W3202929541 cites W2237959143 @default.
- W3202929541 cites W2261354734 @default.
- W3202929541 cites W2464274269 @default.
- W3202929541 cites W2503221436 @default.
- W3202929541 cites W2507496997 @default.
- W3202929541 cites W2550538157 @default.
- W3202929541 cites W2559974467 @default.
- W3202929541 cites W2568683544 @default.
- W3202929541 cites W2576879967 @default.
- W3202929541 cites W2612186685 @default.
- W3202929541 cites W2747715470 @default.
- W3202929541 cites W2765921396 @default.
- W3202929541 cites W2792618813 @default.
- W3202929541 cites W2805106282 @default.
- W3202929541 cites W2807415350 @default.
- W3202929541 cites W2808451423 @default.
- W3202929541 cites W2808927717 @default.
- W3202929541 cites W2886257824 @default.
- W3202929541 cites W2889100747 @default.
- W3202929541 cites W2889474744 @default.
- W3202929541 cites W2895892359 @default.
- W3202929541 cites W2900633536 @default.
- W3202929541 cites W2904792378 @default.
- W3202929541 cites W2907351452 @default.
- W3202929541 cites W2914373984 @default.
- W3202929541 cites W2945561205 @default.
- W3202929541 cites W2956346262 @default.
- W3202929541 cites W2963384204 @default.
- W3202929541 cites W2972552958 @default.
- W3202929541 cites W2996806689 @default.
- W3202929541 cites W2998074434 @default.
- W3202929541 cites W3001557870 @default.
- W3202929541 cites W3007346474 @default.
- W3202929541 cites W3014356165 @default.
- W3202929541 cites W3015605314 @default.
- W3202929541 cites W3125564951 @default.
- W3202929541 cites W3131606647 @default.
- W3202929541 cites W3155434081 @default.
- W3202929541 cites W3157814027 @default.
- W3202929541 cites W3161833296 @default.
- W3202929541 cites W3163838069 @default.
- W3202929541 cites W3185872651 @default.
- W3202929541 cites W4298872063 @default.
- W3202929541 doi "https://doi.org/10.1002/cpe.6652" @default.
- W3202929541 hasPublicationYear "2021" @default.
- W3202929541 type Work @default.
- W3202929541 sameAs 3202929541 @default.
- W3202929541 citedByCount "0" @default.
- W3202929541 crossrefType "journal-article" @default.
- W3202929541 hasAuthorship W3202929541A5021779384 @default.
- W3202929541 hasAuthorship W3202929541A5036721487 @default.
- W3202929541 hasAuthorship W3202929541A5038478503 @default.
- W3202929541 hasAuthorship W3202929541A5074699763 @default.
- W3202929541 hasConcept C110875604 @default.
- W3202929541 hasConcept C116834253 @default.
- W3202929541 hasConcept C119857082 @default.
- W3202929541 hasConcept C124101348 @default.
- W3202929541 hasConcept C136764020 @default.
- W3202929541 hasConcept C154945302 @default.
- W3202929541 hasConcept C38652104 @default.
- W3202929541 hasConcept C38822068 @default.
- W3202929541 hasConcept C40305131 @default.
- W3202929541 hasConcept C41008148 @default.
- W3202929541 hasConcept C541664917 @default.
- W3202929541 hasConcept C59822182 @default.
- W3202929541 hasConcept C64869954 @default.
- W3202929541 hasConcept C84525096 @default.
- W3202929541 hasConcept C86803240 @default.
- W3202929541 hasConceptScore W3202929541C110875604 @default.
- W3202929541 hasConceptScore W3202929541C116834253 @default.
- W3202929541 hasConceptScore W3202929541C119857082 @default.
- W3202929541 hasConceptScore W3202929541C124101348 @default.
- W3202929541 hasConceptScore W3202929541C136764020 @default.
- W3202929541 hasConceptScore W3202929541C154945302 @default.
- W3202929541 hasConceptScore W3202929541C38652104 @default.