Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202968404> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3202968404 endingPage "115928" @default.
- W3202968404 startingPage "115928" @default.
- W3202968404 abstract "Unmanned aerial systems, especially drones have gone through remarkable improvement and expansion in recent years. Drones have been widely utilized in many applications and scenarios, due to their low price and ease of use. However, in some applications drones can pose a malicious threat. To diminish risks to public security and personal privacy, it is necessary to deploy an effective and affordable anti-drone system in sensitive areas to detect, localize, identify, and defend against intruding malicious drones. This research article presents a new publicly available radio frequency drone dataset and investigates detection and identification methodologies to detect single or multiple drones and identify a single detected drone's type. Moreover, special attention in this paper has been underlined to examine the possibility of using deep learning algorithms, particularly fully connected deep neural networks as an anti-drone solution within two different radio frequency bands. We proposed a supervised deep learning algorithm with fully-connected deep neural network models that use raw drone signals rather than features. Regarding the research results, the proposed algorithm shows a lot of potentials. The probability of detecting a single drone is 99.8%, and the probability of type identification is 96.1%. Moreover, the results of multiple drones detection demonstrate an average accuracy of 97.3%. There have not been such comprehensive publications, to this time, in the open literature that have presented and enlightened the problem of multiple drones detection in the radio frequency domain." @default.
- W3202968404 created "2021-10-11" @default.
- W3202968404 creator A5004287024 @default.
- W3202968404 creator A5031889244 @default.
- W3202968404 creator A5051522163 @default.
- W3202968404 creator A5073005646 @default.
- W3202968404 creator A5084667639 @default.
- W3202968404 date "2022-01-01" @default.
- W3202968404 modified "2023-10-01" @default.
- W3202968404 title "Single and multiple drones detection and identification using RF based deep learning algorithm" @default.
- W3202968404 cites W2025053102 @default.
- W3202968404 cites W2464322612 @default.
- W3202968404 cites W2610728744 @default.
- W3202968404 cites W2618530766 @default.
- W3202968404 cites W2786627679 @default.
- W3202968404 cites W2790825704 @default.
- W3202968404 cites W2795278850 @default.
- W3202968404 cites W2801173680 @default.
- W3202968404 cites W2806252395 @default.
- W3202968404 cites W2884089434 @default.
- W3202968404 cites W2889213362 @default.
- W3202968404 cites W2922953676 @default.
- W3202968404 cites W2944086006 @default.
- W3202968404 cites W2974861210 @default.
- W3202968404 cites W2975483804 @default.
- W3202968404 cites W2996980088 @default.
- W3202968404 cites W2999467118 @default.
- W3202968404 cites W3091842109 @default.
- W3202968404 cites W3120093269 @default.
- W3202968404 cites W3130956448 @default.
- W3202968404 cites W3154282752 @default.
- W3202968404 doi "https://doi.org/10.1016/j.eswa.2021.115928" @default.
- W3202968404 hasPublicationYear "2022" @default.
- W3202968404 type Work @default.
- W3202968404 sameAs 3202968404 @default.
- W3202968404 citedByCount "8" @default.
- W3202968404 countsByYear W32029684042022 @default.
- W3202968404 countsByYear W32029684042023 @default.
- W3202968404 crossrefType "journal-article" @default.
- W3202968404 hasAuthorship W3202968404A5004287024 @default.
- W3202968404 hasAuthorship W3202968404A5031889244 @default.
- W3202968404 hasAuthorship W3202968404A5051522163 @default.
- W3202968404 hasAuthorship W3202968404A5073005646 @default.
- W3202968404 hasAuthorship W3202968404A5084667639 @default.
- W3202968404 hasConcept C108583219 @default.
- W3202968404 hasConcept C116834253 @default.
- W3202968404 hasConcept C119857082 @default.
- W3202968404 hasConcept C154945302 @default.
- W3202968404 hasConcept C38652104 @default.
- W3202968404 hasConcept C41008148 @default.
- W3202968404 hasConcept C50644808 @default.
- W3202968404 hasConcept C54355233 @default.
- W3202968404 hasConcept C59519942 @default.
- W3202968404 hasConcept C59822182 @default.
- W3202968404 hasConcept C86803240 @default.
- W3202968404 hasConceptScore W3202968404C108583219 @default.
- W3202968404 hasConceptScore W3202968404C116834253 @default.
- W3202968404 hasConceptScore W3202968404C119857082 @default.
- W3202968404 hasConceptScore W3202968404C154945302 @default.
- W3202968404 hasConceptScore W3202968404C38652104 @default.
- W3202968404 hasConceptScore W3202968404C41008148 @default.
- W3202968404 hasConceptScore W3202968404C50644808 @default.
- W3202968404 hasConceptScore W3202968404C54355233 @default.
- W3202968404 hasConceptScore W3202968404C59519942 @default.
- W3202968404 hasConceptScore W3202968404C59822182 @default.
- W3202968404 hasConceptScore W3202968404C86803240 @default.
- W3202968404 hasLocation W32029684041 @default.
- W3202968404 hasOpenAccess W3202968404 @default.
- W3202968404 hasPrimaryLocation W32029684041 @default.
- W3202968404 hasRelatedWork W3014300295 @default.
- W3202968404 hasRelatedWork W3164822677 @default.
- W3202968404 hasRelatedWork W4220882927 @default.
- W3202968404 hasRelatedWork W4223943233 @default.
- W3202968404 hasRelatedWork W4225161397 @default.
- W3202968404 hasRelatedWork W4312200629 @default.
- W3202968404 hasRelatedWork W4360585206 @default.
- W3202968404 hasRelatedWork W4364306694 @default.
- W3202968404 hasRelatedWork W4380075502 @default.
- W3202968404 hasRelatedWork W4380086463 @default.
- W3202968404 hasVolume "187" @default.
- W3202968404 isParatext "false" @default.
- W3202968404 isRetracted "false" @default.
- W3202968404 magId "3202968404" @default.
- W3202968404 workType "article" @default.