Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202992007> ?p ?o ?g. }
- W3202992007 abstract "Objectives: The present study aimed to evaluate the performance of a Faster Region-based Convolutional Neural Network (R-CNN) algorithm for tooth detection and numbering on periapical images. Methods: The data sets of 1686 randomly selected periapical radiographs of patients were collected retrospectively. A pre-trained model (GoogLeNet Inception v3 CNN) was employed for pre-processing, and transfer learning techniques were applied for data set training. The algorithm consisted of: (1) the Jaw classification model, (2) Region detection models, and (3) the Final algorithm using all models. Finally, an analysis of the latest model has been integrated alongside the others. The sensitivity, precision, true-positive rate, and false-positive/negative rate were computed to analyze the performance of the algorithm using a confusion matrix. Results: An artificial intelligence algorithm (CranioCatch, Eskisehir-Turkey) was designed based on R-CNN inception architecture to automatically detect and number the teeth on periapical images. Of 864 teeth in 156 periapical radiographs, 668 were correctly numbered in the test data set. The F1 score, precision, and sensitivity were 0.8720, 0.7812, and 0.9867, respectively. Conclusion: The study demonstrated the potential accuracy and efficiency of the CNN algorithm for detecting and numbering teeth. The deep learning-based methods can help clinicians reduce workloads, improve dental records, and reduce turnaround time for urgent cases. This architecture might also contribute to forensic science." @default.
- W3202992007 created "2021-10-11" @default.
- W3202992007 creator A5000816494 @default.
- W3202992007 creator A5003306637 @default.
- W3202992007 creator A5008544111 @default.
- W3202992007 creator A5008677423 @default.
- W3202992007 creator A5026065540 @default.
- W3202992007 creator A5035747313 @default.
- W3202992007 creator A5046810190 @default.
- W3202992007 creator A5088529964 @default.
- W3202992007 date "2022-03-01" @default.
- W3202992007 modified "2023-10-01" @default.
- W3202992007 title "Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs" @default.
- W3202992007 cites W1969403819 @default.
- W3202992007 cites W1993684657 @default.
- W3202992007 cites W2010624390 @default.
- W3202992007 cites W2018656768 @default.
- W3202992007 cites W2021422820 @default.
- W3202992007 cites W2047468055 @default.
- W3202992007 cites W2061361914 @default.
- W3202992007 cites W2083406700 @default.
- W3202992007 cites W2129930370 @default.
- W3202992007 cites W2133401603 @default.
- W3202992007 cites W2141619730 @default.
- W3202992007 cites W2275865840 @default.
- W3202992007 cites W2555989946 @default.
- W3202992007 cites W2731899572 @default.
- W3202992007 cites W2765254910 @default.
- W3202992007 cites W2778677104 @default.
- W3202992007 cites W2800706558 @default.
- W3202992007 cites W2883089513 @default.
- W3202992007 cites W2883741661 @default.
- W3202992007 cites W2899380081 @default.
- W3202992007 cites W2905116258 @default.
- W3202992007 cites W2918471352 @default.
- W3202992007 cites W2920073091 @default.
- W3202992007 cites W2947000504 @default.
- W3202992007 cites W2950839012 @default.
- W3202992007 cites W2951985572 @default.
- W3202992007 cites W2965207724 @default.
- W3202992007 cites W2973552874 @default.
- W3202992007 cites W2983831037 @default.
- W3202992007 cites W2996400058 @default.
- W3202992007 cites W2997007780 @default.
- W3202992007 cites W2999494042 @default.
- W3202992007 cites W3016417837 @default.
- W3202992007 cites W3024732005 @default.
- W3202992007 cites W3049469327 @default.
- W3202992007 cites W3080289304 @default.
- W3202992007 cites W3103954751 @default.
- W3202992007 cites W3133592812 @default.
- W3202992007 cites W3196929218 @default.
- W3202992007 doi "https://doi.org/10.1259/dmfr.20210246" @default.
- W3202992007 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34623893" @default.
- W3202992007 hasPublicationYear "2022" @default.
- W3202992007 type Work @default.
- W3202992007 sameAs 3202992007 @default.
- W3202992007 citedByCount "6" @default.
- W3202992007 countsByYear W32029920072022 @default.
- W3202992007 countsByYear W32029920072023 @default.
- W3202992007 crossrefType "journal-article" @default.
- W3202992007 hasAuthorship W3202992007A5000816494 @default.
- W3202992007 hasAuthorship W3202992007A5003306637 @default.
- W3202992007 hasAuthorship W3202992007A5008544111 @default.
- W3202992007 hasAuthorship W3202992007A5008677423 @default.
- W3202992007 hasAuthorship W3202992007A5026065540 @default.
- W3202992007 hasAuthorship W3202992007A5035747313 @default.
- W3202992007 hasAuthorship W3202992007A5046810190 @default.
- W3202992007 hasAuthorship W3202992007A5088529964 @default.
- W3202992007 hasBestOaLocation W32029920072 @default.
- W3202992007 hasConcept C11171543 @default.
- W3202992007 hasConcept C11413529 @default.
- W3202992007 hasConcept C126838900 @default.
- W3202992007 hasConcept C138602881 @default.
- W3202992007 hasConcept C153180895 @default.
- W3202992007 hasConcept C154945302 @default.
- W3202992007 hasConcept C15744967 @default.
- W3202992007 hasConcept C169903167 @default.
- W3202992007 hasConcept C191916993 @default.
- W3202992007 hasConcept C199343813 @default.
- W3202992007 hasConcept C2781140086 @default.
- W3202992007 hasConcept C36454342 @default.
- W3202992007 hasConcept C41008148 @default.
- W3202992007 hasConcept C58489278 @default.
- W3202992007 hasConcept C71924100 @default.
- W3202992007 hasConcept C81363708 @default.
- W3202992007 hasConceptScore W3202992007C11171543 @default.
- W3202992007 hasConceptScore W3202992007C11413529 @default.
- W3202992007 hasConceptScore W3202992007C126838900 @default.
- W3202992007 hasConceptScore W3202992007C138602881 @default.
- W3202992007 hasConceptScore W3202992007C153180895 @default.
- W3202992007 hasConceptScore W3202992007C154945302 @default.
- W3202992007 hasConceptScore W3202992007C15744967 @default.
- W3202992007 hasConceptScore W3202992007C169903167 @default.
- W3202992007 hasConceptScore W3202992007C191916993 @default.
- W3202992007 hasConceptScore W3202992007C199343813 @default.
- W3202992007 hasConceptScore W3202992007C2781140086 @default.
- W3202992007 hasConceptScore W3202992007C36454342 @default.
- W3202992007 hasConceptScore W3202992007C41008148 @default.
- W3202992007 hasConceptScore W3202992007C58489278 @default.