Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203030421> ?p ?o ?g. }
- W3203030421 abstract "There is an ongoing quest to improve on the spectroscopic quality of nuclear energy density functionals (EDFs) of the Skyrme type through extensions of its traditional form. One direction for such activities is the inclusion of terms of higher order in gradients in the EDF. We report on exploratory symmetry-breaking calculations performed for an extension of the Skyrme EDF that includes central terms with four gradients at next-to-next-to-leading order (N2LO) and for which the high-quality parametrization SN2LO1 has been constructed recently [Becker et al., Phys. Rev. C 96, 044330 (2017)]. Up to now, the investigation of such functionals with higher-order terms was limited to infinite matter and spherically symmetric configurations of singly and doubly magic nuclei. We address here nuclei and phenomena that require us to consider axial and nonaxial deformation, both for reflection-symmetric and also reflection-asymmetric shapes, as well as the breaking of time-reversal invariance. Achieving these calculations demanded a number of formal developments. These all resulted from the formulation of the N2LO EDF requiring the introduction of new local densities with additional gradients that are not present in the EDF at NLO. Their choice is not unique, but can differ in the way the gradients are coupled. While designing a numerical implementation of N2LO EDFs in Cartesian three-dimensional coordinate-space representation, we have developed a novel definition and a new unifying notation for normal and pair densities that contain gradients at arbitrary order. Besides having mnemonic advantages, the new notation allows for the easy identification of redundancies and reducibilities in a given set of local densities, and the new definition makes it straightforward to construct densities that automatically adopt the symmetries of the many-body state they are constructed from. The resulting scheme resolves several issues with some of the choices that have been made for local densities in the past, in particular when breaking time-reversal symmetry. Guided by general practical considerations, we propose an alternative form of the N2LO contribution to the Skyrme EDF that is built from a different set of densities. It has exactly the same physics content, but is much more efficient to handle in formal discussions and, compared to the original formulation, leads to a substantial reduction of computational cost and memory requirements in deformed codes. As representative examples for the performance of SN2LO1, we have chosen the ground states of even-even Kr and Nd isotopes, the fission barrier of $^{240}mathrm{Pu}$, as well as the superdeformed rotational band of $^{194}mathrm{Hg}$. Overall, for the nuclei and phenomena studied here, the SN2LO1 parametrization does not yet present a systematic improvement over standard NLO parametrizations. This finding calls for improved fit protocols that better discriminate between NLO and N2LO terms and better exploit the unique features of the additional degrees of freedom offered by the latter." @default.
- W3203030421 created "2021-10-11" @default.
- W3203030421 creator A5068545466 @default.
- W3203030421 creator A5090999704 @default.
- W3203030421 date "2021-10-08" @default.
- W3203030421 modified "2023-10-10" @default.
- W3203030421 title "Skyrme pseudopotentials at next-to-next-to-leading order: Construction of local densities and first symmetry-breaking calculations" @default.
- W3203030421 cites W1614590832 @default.
- W3203030421 cites W1658530497 @default.
- W3203030421 cites W1735185058 @default.
- W3203030421 cites W1965427519 @default.
- W3203030421 cites W1971123406 @default.
- W3203030421 cites W1973511252 @default.
- W3203030421 cites W1974041891 @default.
- W3203030421 cites W1974876284 @default.
- W3203030421 cites W1980117888 @default.
- W3203030421 cites W1981970250 @default.
- W3203030421 cites W1983222497 @default.
- W3203030421 cites W1989280481 @default.
- W3203030421 cites W1989681671 @default.
- W3203030421 cites W1990899874 @default.
- W3203030421 cites W1991614892 @default.
- W3203030421 cites W1991754328 @default.
- W3203030421 cites W1993407897 @default.
- W3203030421 cites W1993688832 @default.
- W3203030421 cites W1993900405 @default.
- W3203030421 cites W1994251724 @default.
- W3203030421 cites W1994495483 @default.
- W3203030421 cites W1995361470 @default.
- W3203030421 cites W1997664190 @default.
- W3203030421 cites W1997948956 @default.
- W3203030421 cites W2002242928 @default.
- W3203030421 cites W2003776257 @default.
- W3203030421 cites W2005674584 @default.
- W3203030421 cites W2005724945 @default.
- W3203030421 cites W2007796880 @default.
- W3203030421 cites W2007983890 @default.
- W3203030421 cites W2015304151 @default.
- W3203030421 cites W2015560597 @default.
- W3203030421 cites W2016108676 @default.
- W3203030421 cites W2016380341 @default.
- W3203030421 cites W2017445558 @default.
- W3203030421 cites W2021101754 @default.
- W3203030421 cites W2024675590 @default.
- W3203030421 cites W2027322596 @default.
- W3203030421 cites W2028945019 @default.
- W3203030421 cites W2032128109 @default.
- W3203030421 cites W2032748140 @default.
- W3203030421 cites W2036252282 @default.
- W3203030421 cites W2037798792 @default.
- W3203030421 cites W2038280548 @default.
- W3203030421 cites W2043668260 @default.
- W3203030421 cites W2043903447 @default.
- W3203030421 cites W2046068097 @default.
- W3203030421 cites W2047710765 @default.
- W3203030421 cites W2052557437 @default.
- W3203030421 cites W2052751286 @default.
- W3203030421 cites W2054175920 @default.
- W3203030421 cites W2057398503 @default.
- W3203030421 cites W2060133070 @default.
- W3203030421 cites W2062314245 @default.
- W3203030421 cites W2062679439 @default.
- W3203030421 cites W2063437360 @default.
- W3203030421 cites W2069345952 @default.
- W3203030421 cites W2072032173 @default.
- W3203030421 cites W2073504673 @default.
- W3203030421 cites W2078133474 @default.
- W3203030421 cites W2078589228 @default.
- W3203030421 cites W2078606207 @default.
- W3203030421 cites W2082749366 @default.
- W3203030421 cites W2090088421 @default.
- W3203030421 cites W2093529617 @default.
- W3203030421 cites W2095530935 @default.
- W3203030421 cites W2105216246 @default.
- W3203030421 cites W2131600416 @default.
- W3203030421 cites W2162393009 @default.
- W3203030421 cites W2170192903 @default.
- W3203030421 cites W2208679423 @default.
- W3203030421 cites W2222022162 @default.
- W3203030421 cites W2226428947 @default.
- W3203030421 cites W2418403484 @default.
- W3203030421 cites W2739822561 @default.
- W3203030421 cites W2746714418 @default.
- W3203030421 cites W2891012969 @default.
- W3203030421 cites W2900869988 @default.
- W3203030421 cites W3026896109 @default.
- W3203030421 cites W3043506766 @default.
- W3203030421 cites W3095735239 @default.
- W3203030421 cites W309730488 @default.
- W3203030421 cites W3099981192 @default.
- W3203030421 cites W3101675063 @default.
- W3203030421 cites W3101919378 @default.
- W3203030421 cites W3105125632 @default.
- W3203030421 cites W3105862318 @default.
- W3203030421 cites W4232620373 @default.
- W3203030421 cites W4288339876 @default.
- W3203030421 doi "https://doi.org/10.1103/physrevc.104.044308" @default.
- W3203030421 hasPublicationYear "2021" @default.
- W3203030421 type Work @default.
- W3203030421 sameAs 3203030421 @default.