Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203072317> ?p ?o ?g. }
- W3203072317 abstract "Abstract We propose a new modified Parker's method for efficient gravitational forward modeling and inversion using general polyhedral models. We have made several important modifications to the classical method, including: (a) The new method is now applicable to a general polyhedron represented by triangulated surface or tetrahedral mesh, and with arbitrarily variable 3D density distribution. (b) An optimal Fourier‐domain sampling strategy is used to improve the numerical accuracy of the new algorithm significantly. (c) A simple and effective automatic layering technique is introduced to accelerate the convergence rate of Parker's method. The method is demonstrated using both synthetic and real polyhedral models, including a sphere model approximated by a polyhedron, two asteroids, a digital elevation model in the Himalaya region, and the Yucca Flat basin model in Nevada. The numerical results show that, compared with analytical solutions of polyhedral models in the space domain, the modified Parker's method can improve the computational efficiency by several orders of magnitude while obtaining almost the same simulation results. The difference is well below existing instrumentation error level. By embedding the new forward algorithm into an iterative process, it can be used for fast inversion of density interfaces. Our new method is suitable for the efficient modeling and inversion of gravitational potential, gravitational vector, and gravitational gradient tensor caused by polyhedral models with a large number of faces, representing geological abnormal bodies, asteroids, and single or multilayer density interface models with triangulated surfaces." @default.
- W3203072317 created "2021-10-11" @default.
- W3203072317 creator A5059347198 @default.
- W3203072317 date "2021-10-01" @default.
- W3203072317 modified "2023-09-25" @default.
- W3203072317 title "Modified Parker's Method for Gravitational Forward and Inverse Modeling Using General Polyhedral Models" @default.
- W3203072317 cites W1563221476 @default.
- W3203072317 cites W1891824491 @default.
- W3203072317 cites W1917521316 @default.
- W3203072317 cites W1956050446 @default.
- W3203072317 cites W1964040289 @default.
- W3203072317 cites W1965138532 @default.
- W3203072317 cites W1967173056 @default.
- W3203072317 cites W1978305952 @default.
- W3203072317 cites W1980959985 @default.
- W3203072317 cites W1986419335 @default.
- W3203072317 cites W1990491134 @default.
- W3203072317 cites W1990602605 @default.
- W3203072317 cites W1990920494 @default.
- W3203072317 cites W1999734291 @default.
- W3203072317 cites W2000931351 @default.
- W3203072317 cites W2007201487 @default.
- W3203072317 cites W2011756886 @default.
- W3203072317 cites W2012208288 @default.
- W3203072317 cites W2012300893 @default.
- W3203072317 cites W2023910909 @default.
- W3203072317 cites W2027795135 @default.
- W3203072317 cites W2037036885 @default.
- W3203072317 cites W2037964341 @default.
- W3203072317 cites W2038645439 @default.
- W3203072317 cites W2045721305 @default.
- W3203072317 cites W2048635331 @default.
- W3203072317 cites W2051993838 @default.
- W3203072317 cites W2061250918 @default.
- W3203072317 cites W2061856634 @default.
- W3203072317 cites W2065167475 @default.
- W3203072317 cites W2067662764 @default.
- W3203072317 cites W2068499739 @default.
- W3203072317 cites W2072575351 @default.
- W3203072317 cites W2078400374 @default.
- W3203072317 cites W2083751162 @default.
- W3203072317 cites W2084324925 @default.
- W3203072317 cites W2089173587 @default.
- W3203072317 cites W2098724503 @default.
- W3203072317 cites W2099130556 @default.
- W3203072317 cites W2102160520 @default.
- W3203072317 cites W2106093937 @default.
- W3203072317 cites W2106168839 @default.
- W3203072317 cites W2109991971 @default.
- W3203072317 cites W2110931156 @default.
- W3203072317 cites W2113247321 @default.
- W3203072317 cites W2114537565 @default.
- W3203072317 cites W2119981834 @default.
- W3203072317 cites W2126504833 @default.
- W3203072317 cites W2127235076 @default.
- W3203072317 cites W2131768055 @default.
- W3203072317 cites W2134264388 @default.
- W3203072317 cites W2136342682 @default.
- W3203072317 cites W2150226675 @default.
- W3203072317 cites W2150691677 @default.
- W3203072317 cites W2160503946 @default.
- W3203072317 cites W2253475287 @default.
- W3203072317 cites W2291933988 @default.
- W3203072317 cites W2321642845 @default.
- W3203072317 cites W2460663601 @default.
- W3203072317 cites W2508962325 @default.
- W3203072317 cites W2514202649 @default.
- W3203072317 cites W2535414027 @default.
- W3203072317 cites W2556461091 @default.
- W3203072317 cites W2562051426 @default.
- W3203072317 cites W2581062778 @default.
- W3203072317 cites W2594649178 @default.
- W3203072317 cites W2600843036 @default.
- W3203072317 cites W2605993793 @default.
- W3203072317 cites W2754855698 @default.
- W3203072317 cites W2755710066 @default.
- W3203072317 cites W2761080207 @default.
- W3203072317 cites W2763639870 @default.
- W3203072317 cites W2765988733 @default.
- W3203072317 cites W2767938052 @default.
- W3203072317 cites W2781462985 @default.
- W3203072317 cites W2784366545 @default.
- W3203072317 cites W2789713209 @default.
- W3203072317 cites W2792928941 @default.
- W3203072317 cites W2810575147 @default.
- W3203072317 cites W2885485533 @default.
- W3203072317 cites W2887595668 @default.
- W3203072317 cites W2890668245 @default.
- W3203072317 cites W2891603135 @default.
- W3203072317 cites W2910625398 @default.
- W3203072317 cites W2916443815 @default.
- W3203072317 cites W2939182103 @default.
- W3203072317 cites W2944376832 @default.
- W3203072317 cites W2952265525 @default.
- W3203072317 cites W2969376132 @default.
- W3203072317 cites W2971507844 @default.
- W3203072317 cites W2973391561 @default.
- W3203072317 cites W2986754283 @default.
- W3203072317 cites W2987296443 @default.
- W3203072317 cites W2996627044 @default.