Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203144002> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3203144002 abstract "<div>A key challenge in conformer sampling is to find low-energy conformations with a small number of energy evaluations. We have recently demonstrated Bayesian optimization as an effective method to search for energetically favorable conformations. This approach balances between <i>exploitation</i> and <i>exploration</i>, and lead to superior performance when compared to exhaustive or random search methods. In this work, we extend strategies on proteins and oligopeptides (e.g. Ramachandran plots of secondary structure) to study the correlated torsions in small molecules. We use a bivariate von Mises distribution to capture the correlations, and use it to constrain the search space. We validate the performance of our Bayesian optimization with prior knowledge (BOKEI) on a dataset consisting of 533 diverse small organic molecules, using a force field (MMFF94) and a semi empirical method (GFN2). We compare BOKEI with Bayesian optimization with expected improvement (BOA-EI), and a genetic algorithm (GA), using a fixed number of energy evaluations. In 70(± 2.1)% of the cases examined, BOKEI finds lower energy conformations than global optimization with BOA-EI or GA. More importantly, these patterns find correlated torsions in 10-15% of molecules in larger data sets, 3-8 times more frequently than previous work. We also find that the BOKEI patterns not only describe steric clashes, but also reflect favorable intramolecular interactions, including hydrogen bonds and π-π stacking. Further understanding of the conformational preferences of molecules will help find low energy conformers efficiently for a wide range of computational modeling applications.</div>" @default.
- W3203144002 created "2021-10-11" @default.
- W3203144002 creator A5011245839 @default.
- W3203144002 creator A5033956297 @default.
- W3203144002 creator A5069354331 @default.
- W3203144002 date "2019-08-02" @default.
- W3203144002 modified "2023-09-26" @default.
- W3203144002 title "BOKEI: Bayesian Optimization Using Knowledge of Correlated Torsions and Expected Improvement for Conformer Generation" @default.
- W3203144002 doi "https://doi.org/10.26434/chemrxiv.9209213.v1" @default.
- W3203144002 hasPublicationYear "2019" @default.
- W3203144002 type Work @default.
- W3203144002 sameAs 3203144002 @default.
- W3203144002 citedByCount "0" @default.
- W3203144002 crossrefType "posted-content" @default.
- W3203144002 hasAuthorship W3203144002A5011245839 @default.
- W3203144002 hasAuthorship W3203144002A5033956297 @default.
- W3203144002 hasAuthorship W3203144002A5069354331 @default.
- W3203144002 hasBestOaLocation W32031440021 @default.
- W3203144002 hasConcept C107673813 @default.
- W3203144002 hasConcept C10803110 @default.
- W3203144002 hasConcept C14301744 @default.
- W3203144002 hasConcept C154945302 @default.
- W3203144002 hasConcept C178790620 @default.
- W3203144002 hasConcept C185592680 @default.
- W3203144002 hasConcept C18705241 @default.
- W3203144002 hasConcept C203616005 @default.
- W3203144002 hasConcept C28826006 @default.
- W3203144002 hasConcept C32909587 @default.
- W3203144002 hasConcept C33347731 @default.
- W3203144002 hasConcept C33923547 @default.
- W3203144002 hasConcept C41008148 @default.
- W3203144002 hasConcept C47701112 @default.
- W3203144002 hasConcept C55493867 @default.
- W3203144002 hasConcept C71240020 @default.
- W3203144002 hasConcept C75079739 @default.
- W3203144002 hasConceptScore W3203144002C107673813 @default.
- W3203144002 hasConceptScore W3203144002C10803110 @default.
- W3203144002 hasConceptScore W3203144002C14301744 @default.
- W3203144002 hasConceptScore W3203144002C154945302 @default.
- W3203144002 hasConceptScore W3203144002C178790620 @default.
- W3203144002 hasConceptScore W3203144002C185592680 @default.
- W3203144002 hasConceptScore W3203144002C18705241 @default.
- W3203144002 hasConceptScore W3203144002C203616005 @default.
- W3203144002 hasConceptScore W3203144002C28826006 @default.
- W3203144002 hasConceptScore W3203144002C32909587 @default.
- W3203144002 hasConceptScore W3203144002C33347731 @default.
- W3203144002 hasConceptScore W3203144002C33923547 @default.
- W3203144002 hasConceptScore W3203144002C41008148 @default.
- W3203144002 hasConceptScore W3203144002C47701112 @default.
- W3203144002 hasConceptScore W3203144002C55493867 @default.
- W3203144002 hasConceptScore W3203144002C71240020 @default.
- W3203144002 hasConceptScore W3203144002C75079739 @default.
- W3203144002 hasLocation W32031440021 @default.
- W3203144002 hasLocation W32031440022 @default.
- W3203144002 hasLocation W32031440023 @default.
- W3203144002 hasOpenAccess W3203144002 @default.
- W3203144002 hasPrimaryLocation W32031440021 @default.
- W3203144002 hasRelatedWork W1983935140 @default.
- W3203144002 hasRelatedWork W1988520803 @default.
- W3203144002 hasRelatedWork W2014927954 @default.
- W3203144002 hasRelatedWork W2019844676 @default.
- W3203144002 hasRelatedWork W2029417509 @default.
- W3203144002 hasRelatedWork W2051040825 @default.
- W3203144002 hasRelatedWork W222557567 @default.
- W3203144002 hasRelatedWork W230227022 @default.
- W3203144002 hasRelatedWork W3203144002 @default.
- W3203144002 hasRelatedWork W4211052948 @default.
- W3203144002 isParatext "false" @default.
- W3203144002 isRetracted "false" @default.
- W3203144002 magId "3203144002" @default.
- W3203144002 workType "article" @default.