Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203144025> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3203144025 endingPage "58" @default.
- W3203144025 startingPage "45" @default.
- W3203144025 abstract "Anomaly detection is a major problem that has been well studied in various fields of research and fields of application. In this paper, we present several methods that can be built on existing deep learning solutions for unsupervised anomaly detection, so that outliers can be separated from normal data in an efficient manner. We focus on approaches that use generative adversarial networks (GAN) and autoencoders for anomaly detection. By using these deep anomaly detection techniques, we can overcome the problem that we need to have a large-scale anomaly data in the learning phase of a detection system. So, we compared various methods of machine based and deep learning anomaly detection with its application in various fields. This article used seven available datasets. We report the results on anomaly detection datasets, using performance metrics, and discuss their performance on finding clustered and low density anomalies." @default.
- W3203144025 created "2021-10-11" @default.
- W3203144025 creator A5019631126 @default.
- W3203144025 creator A5020295680 @default.
- W3203144025 creator A5062152618 @default.
- W3203144025 creator A5091281481 @default.
- W3203144025 date "2021-10-02" @default.
- W3203144025 modified "2023-10-18" @default.
- W3203144025 title "Generative and Autoencoder Models for Large-Scale Mutivariate Unsupervised Anomaly Detection" @default.
- W3203144025 cites W1587559447 @default.
- W3203144025 cites W1969082358 @default.
- W3203144025 cites W2049058890 @default.
- W3203144025 cites W2056081083 @default.
- W3203144025 cites W2129281431 @default.
- W3203144025 cites W2132870739 @default.
- W3203144025 cites W2144182447 @default.
- W3203144025 cites W2587706859 @default.
- W3203144025 cites W2599354622 @default.
- W3203144025 cites W2888026659 @default.
- W3203144025 cites W2963307331 @default.
- W3203144025 cites W2964295764 @default.
- W3203144025 cites W2978971541 @default.
- W3203144025 cites W2982447057 @default.
- W3203144025 cites W3016980352 @default.
- W3203144025 doi "https://doi.org/10.1007/978-981-16-3637-0_4" @default.
- W3203144025 hasPublicationYear "2021" @default.
- W3203144025 type Work @default.
- W3203144025 sameAs 3203144025 @default.
- W3203144025 citedByCount "2" @default.
- W3203144025 countsByYear W32031440252023 @default.
- W3203144025 crossrefType "book-chapter" @default.
- W3203144025 hasAuthorship W3203144025A5019631126 @default.
- W3203144025 hasAuthorship W3203144025A5020295680 @default.
- W3203144025 hasAuthorship W3203144025A5062152618 @default.
- W3203144025 hasAuthorship W3203144025A5091281481 @default.
- W3203144025 hasConcept C101738243 @default.
- W3203144025 hasConcept C108583219 @default.
- W3203144025 hasConcept C119857082 @default.
- W3203144025 hasConcept C120665830 @default.
- W3203144025 hasConcept C121332964 @default.
- W3203144025 hasConcept C12997251 @default.
- W3203144025 hasConcept C153180895 @default.
- W3203144025 hasConcept C154945302 @default.
- W3203144025 hasConcept C192209626 @default.
- W3203144025 hasConcept C205649164 @default.
- W3203144025 hasConcept C26873012 @default.
- W3203144025 hasConcept C2778755073 @default.
- W3203144025 hasConcept C39890363 @default.
- W3203144025 hasConcept C41008148 @default.
- W3203144025 hasConcept C58640448 @default.
- W3203144025 hasConcept C739882 @default.
- W3203144025 hasConcept C79337645 @default.
- W3203144025 hasConcept C8038995 @default.
- W3203144025 hasConceptScore W3203144025C101738243 @default.
- W3203144025 hasConceptScore W3203144025C108583219 @default.
- W3203144025 hasConceptScore W3203144025C119857082 @default.
- W3203144025 hasConceptScore W3203144025C120665830 @default.
- W3203144025 hasConceptScore W3203144025C121332964 @default.
- W3203144025 hasConceptScore W3203144025C12997251 @default.
- W3203144025 hasConceptScore W3203144025C153180895 @default.
- W3203144025 hasConceptScore W3203144025C154945302 @default.
- W3203144025 hasConceptScore W3203144025C192209626 @default.
- W3203144025 hasConceptScore W3203144025C205649164 @default.
- W3203144025 hasConceptScore W3203144025C26873012 @default.
- W3203144025 hasConceptScore W3203144025C2778755073 @default.
- W3203144025 hasConceptScore W3203144025C39890363 @default.
- W3203144025 hasConceptScore W3203144025C41008148 @default.
- W3203144025 hasConceptScore W3203144025C58640448 @default.
- W3203144025 hasConceptScore W3203144025C739882 @default.
- W3203144025 hasConceptScore W3203144025C79337645 @default.
- W3203144025 hasConceptScore W3203144025C8038995 @default.
- W3203144025 hasLocation W32031440251 @default.
- W3203144025 hasOpenAccess W3203144025 @default.
- W3203144025 hasPrimaryLocation W32031440251 @default.
- W3203144025 hasRelatedWork W2292254049 @default.
- W3203144025 hasRelatedWork W2964457614 @default.
- W3203144025 hasRelatedWork W3044458868 @default.
- W3203144025 hasRelatedWork W3123344745 @default.
- W3203144025 hasRelatedWork W3136392033 @default.
- W3203144025 hasRelatedWork W3185547778 @default.
- W3203144025 hasRelatedWork W3186512740 @default.
- W3203144025 hasRelatedWork W4206064467 @default.
- W3203144025 hasRelatedWork W4310034804 @default.
- W3203144025 hasRelatedWork W4312467842 @default.
- W3203144025 isParatext "false" @default.
- W3203144025 isRetracted "false" @default.
- W3203144025 magId "3203144025" @default.
- W3203144025 workType "book-chapter" @default.