Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203147718> ?p ?o ?g. }
- W3203147718 abstract "Abstract Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has formally examined mosquito resistance to PBO-synergized insecticides. We used Culex quinquefasciatus as a model mosquito examined the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions prior- and post-PBO exposure. We measured mosquito mortalities and metabolic enzyme expressions in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. We found that field Culex quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality ranged from 3.7±4.7% to 66.7±7.7%), except malathion. Field mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When the field mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compare to 0.02% for susceptible mosquitoes. Knockdown resistance gene mutation (L1014F) rate was 62% in field mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25∼34%, GST by 11%, and had no impact on COE enzyme expression. Even with the optimal PBO concentration and exposure duration, field mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to laboratory controls. These results demonstrate that PBO alone may not be enough to control highly pyrethroid resistant mosquitoes due to the multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored. Authors’ Summary Mosquitoes are vectors of many major infectious diseases globally. Insecticides and related products are widely used for mosquito controls and disease preventions. Over time and following repeated use, mosquitoes (including Aedes, Anopheles and Culex ) have developed very high resistance to multiple insecticides all over the world. Target site insensitivity due to mutations in the voltage-gated sodium channel gene and overproduction of metabolic detoxification enzymes such as cytochrome P450 (CYP) monooxygenases play critical role in insecticide resistance in mosquitoes. To enhance the killing power of insecticides, synergized insecticides were developed by mixing insecticide synergists with pyrethroids. Discovered in the 1940s, piperonyl butoxide (PBO) is one of the earliest and most commonly used insecticide synergists. Field application of PBO-synergized insecticides performed far better than mono-pyrethroids. PBO-treated long-lasting insecticidal nets (PBO-LLINs), which also use pyrethroids, outperformed regular LLIN for malaria control in many African countries. PBO-LLIN is soon to be rolled out on a large scale for malaria control in Africa. One important question regarding the use of synergized insecticides is whether they will select for vector population resistance to synergized insecticide products, in other words, are PBO-synergized pyrethroids effective against highly insecticide-resistant mosquitoes? To date, no study has formally examined mosquito resistance to PBO-synergized insecticides. Here, we used Culex quinquefasciatus as a model mosquito, we examined its resistance status to different insecticides including PBO-synergized pyrethrins and tested how PBO exposure affect mosquito mortality and the expressions of metabolic enzymes. We found that field Culex quinquefasciatus mosquitoes were resistant to multiple insecticides tested, including PBO-synergized pyrethroids. Field mosquitoes had elevated levels of carboxylesterase (COE) and monooxygenase (P450) but not glutathione S-transferase (GST) enzyme expressions compared to susceptible mosquitoes. Even with optimal PBO concentration and exposure duration, field mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to laboratory controls, and PBO exposure had no impact on COE enzyme expressions. The phenomena of the insecticide-resistant mosquitoes’ insensitivity to PBO exposure or PBO-synergized insecticides and multiple-resistance mechanisms have also been reported from Aedes and Anopheles mosquitoes in different countries. These results demonstrate that PBO alone is not enough to control highly pyrethroid resistant mosquitoes due to multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored" @default.
- W3203147718 created "2021-10-11" @default.
- W3203147718 creator A5005890948 @default.
- W3203147718 creator A5027560622 @default.
- W3203147718 creator A5031221050 @default.
- W3203147718 creator A5046262151 @default.
- W3203147718 creator A5047855563 @default.
- W3203147718 creator A5067626061 @default.
- W3203147718 date "2021-10-01" @default.
- W3203147718 modified "2023-10-17" @default.
- W3203147718 title "Emerging mosquito resistance to piperonyl butoxide-synergized pyrethroid insecticide and its mechanism" @default.
- W3203147718 cites W1840107086 @default.
- W3203147718 cites W1970029006 @default.
- W3203147718 cites W1985119712 @default.
- W3203147718 cites W1985955491 @default.
- W3203147718 cites W2015825096 @default.
- W3203147718 cites W2045760616 @default.
- W3203147718 cites W2056317856 @default.
- W3203147718 cites W2058873893 @default.
- W3203147718 cites W2090148364 @default.
- W3203147718 cites W2110918782 @default.
- W3203147718 cites W2118798158 @default.
- W3203147718 cites W2137071818 @default.
- W3203147718 cites W2137168497 @default.
- W3203147718 cites W2150226166 @default.
- W3203147718 cites W2150284397 @default.
- W3203147718 cites W2151921184 @default.
- W3203147718 cites W2156256990 @default.
- W3203147718 cites W2164612146 @default.
- W3203147718 cites W2166537326 @default.
- W3203147718 cites W2192601251 @default.
- W3203147718 cites W2236269967 @default.
- W3203147718 cites W2313198243 @default.
- W3203147718 cites W2324752860 @default.
- W3203147718 cites W2395763062 @default.
- W3203147718 cites W2409830207 @default.
- W3203147718 cites W2550805671 @default.
- W3203147718 cites W2559728675 @default.
- W3203147718 cites W2751297261 @default.
- W3203147718 cites W2761197044 @default.
- W3203147718 cites W2768647510 @default.
- W3203147718 cites W2769252946 @default.
- W3203147718 cites W2796879453 @default.
- W3203147718 cites W2824514680 @default.
- W3203147718 cites W2904408913 @default.
- W3203147718 cites W2912210223 @default.
- W3203147718 cites W2932438086 @default.
- W3203147718 cites W2945629849 @default.
- W3203147718 cites W2947702284 @default.
- W3203147718 cites W2965823147 @default.
- W3203147718 cites W2976010550 @default.
- W3203147718 cites W2991008581 @default.
- W3203147718 cites W2994718838 @default.
- W3203147718 cites W3013871272 @default.
- W3203147718 cites W3033899972 @default.
- W3203147718 cites W3115496349 @default.
- W3203147718 cites W3135081981 @default.
- W3203147718 cites W4211002680 @default.
- W3203147718 cites W648846572 @default.
- W3203147718 doi "https://doi.org/10.1101/2021.09.29.462303" @default.
- W3203147718 hasPublicationYear "2021" @default.
- W3203147718 type Work @default.
- W3203147718 sameAs 3203147718 @default.
- W3203147718 citedByCount "0" @default.
- W3203147718 crossrefType "posted-content" @default.
- W3203147718 hasAuthorship W3203147718A5005890948 @default.
- W3203147718 hasAuthorship W3203147718A5027560622 @default.
- W3203147718 hasAuthorship W3203147718A5031221050 @default.
- W3203147718 hasAuthorship W3203147718A5046262151 @default.
- W3203147718 hasAuthorship W3203147718A5047855563 @default.
- W3203147718 hasAuthorship W3203147718A5067626061 @default.
- W3203147718 hasBestOaLocation W32031477181 @default.
- W3203147718 hasConcept C161176658 @default.
- W3203147718 hasConcept C173758957 @default.
- W3203147718 hasConcept C181199279 @default.
- W3203147718 hasConcept C203014093 @default.
- W3203147718 hasConcept C2776035571 @default.
- W3203147718 hasConcept C2776217558 @default.
- W3203147718 hasConcept C2776638905 @default.
- W3203147718 hasConcept C2777338454 @default.
- W3203147718 hasConcept C2777553912 @default.
- W3203147718 hasConcept C2777775583 @default.
- W3203147718 hasConcept C2778048844 @default.
- W3203147718 hasConcept C2778325069 @default.
- W3203147718 hasConcept C2779518617 @default.
- W3203147718 hasConcept C2779985137 @default.
- W3203147718 hasConcept C2992837615 @default.
- W3203147718 hasConcept C33070731 @default.
- W3203147718 hasConcept C55493867 @default.
- W3203147718 hasConcept C59822182 @default.
- W3203147718 hasConcept C6557445 @default.
- W3203147718 hasConcept C86803240 @default.
- W3203147718 hasConceptScore W3203147718C161176658 @default.
- W3203147718 hasConceptScore W3203147718C173758957 @default.
- W3203147718 hasConceptScore W3203147718C181199279 @default.
- W3203147718 hasConceptScore W3203147718C203014093 @default.
- W3203147718 hasConceptScore W3203147718C2776035571 @default.
- W3203147718 hasConceptScore W3203147718C2776217558 @default.
- W3203147718 hasConceptScore W3203147718C2776638905 @default.
- W3203147718 hasConceptScore W3203147718C2777338454 @default.