Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203166992> ?p ?o ?g. }
- W3203166992 endingPage "2415" @default.
- W3203166992 startingPage "2406" @default.
- W3203166992 abstract "Anomaly detection on attributed graphs has received increasing research attention lately due to the broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Heretofore, most of the existing efforts are predominately performed in an unsupervised manner due to the expensive cost of acquiring anomaly labels, especially for newly formed domains. How to leverage the invaluable auxiliary information from a labeled attributed graph to facilitate the anomaly detection in the unlabeled attributed graph is seldom investigated. In this study, we aim to tackle the problem of cross-domain graph anomaly detection with domain adaptation. However, this task remains nontrivial mainly due to: 1) the data heterogeneity including both the topological structure and nodal attributes in an attributed graph and 2) the complexity of capturing both invariant and specific anomalies on the target domain graph. To tackle these challenges, we propose a novel framework COMMANDER for cross-domain anomaly detection on attributed graphs. Specifically, COMMANDER first compresses the two attributed graphs from different domains to low-dimensional space via a graph attentive encoder. In addition, we utilize a domain discriminator and an anomaly classifier to detect anomalies that appear across networks from different domains. In order to further detect the anomalies that merely appear in the target network, we develop an attribute decoder to provide additional signals for assessing node abnormality. Extensive experiments on various real-world cross-domain graph datasets demonstrate the efficacy of our approach." @default.
- W3203166992 created "2021-10-11" @default.
- W3203166992 creator A5013881064 @default.
- W3203166992 creator A5029588473 @default.
- W3203166992 creator A5044455276 @default.
- W3203166992 creator A5058670321 @default.
- W3203166992 creator A5086333675 @default.
- W3203166992 date "2022-06-01" @default.
- W3203166992 modified "2023-09-27" @default.
- W3203166992 title "Cross-Domain Graph Anomaly Detection" @default.
- W3203166992 cites W1492581097 @default.
- W3203166992 cites W1722318740 @default.
- W3203166992 cites W1980867644 @default.
- W3203166992 cites W2022322548 @default.
- W3203166992 cites W2033083678 @default.
- W3203166992 cites W2034572462 @default.
- W3203166992 cites W2064058256 @default.
- W3203166992 cites W2073749068 @default.
- W3203166992 cites W2089554624 @default.
- W3203166992 cites W2134008243 @default.
- W3203166992 cites W2144182447 @default.
- W3203166992 cites W2165698076 @default.
- W3203166992 cites W2172852798 @default.
- W3203166992 cites W2204904589 @default.
- W3203166992 cites W2593768305 @default.
- W3203166992 cites W2741114205 @default.
- W3203166992 cites W2743138268 @default.
- W3203166992 cites W2769216919 @default.
- W3203166992 cites W2782836818 @default.
- W3203166992 cites W2808544127 @default.
- W3203166992 cites W2904549000 @default.
- W3203166992 cites W2906836970 @default.
- W3203166992 cites W2919115771 @default.
- W3203166992 cites W2944250323 @default.
- W3203166992 cites W2963291921 @default.
- W3203166992 cites W2963486145 @default.
- W3203166992 cites W2965115497 @default.
- W3203166992 cites W2972209102 @default.
- W3203166992 cites W2997964288 @default.
- W3203166992 cites W2998336824 @default.
- W3203166992 cites W3012644407 @default.
- W3203166992 cites W3034213836 @default.
- W3203166992 cites W3093649180 @default.
- W3203166992 cites W3094624443 @default.
- W3203166992 cites W3106229813 @default.
- W3203166992 cites W3152507776 @default.
- W3203166992 cites W4288616731 @default.
- W3203166992 doi "https://doi.org/10.1109/tnnls.2021.3110982" @default.
- W3203166992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34596557" @default.
- W3203166992 hasPublicationYear "2022" @default.
- W3203166992 type Work @default.
- W3203166992 sameAs 3203166992 @default.
- W3203166992 citedByCount "3" @default.
- W3203166992 countsByYear W32031669922021 @default.
- W3203166992 countsByYear W32031669922022 @default.
- W3203166992 countsByYear W32031669922023 @default.
- W3203166992 crossrefType "journal-article" @default.
- W3203166992 hasAuthorship W3203166992A5013881064 @default.
- W3203166992 hasAuthorship W3203166992A5029588473 @default.
- W3203166992 hasAuthorship W3203166992A5044455276 @default.
- W3203166992 hasAuthorship W3203166992A5058670321 @default.
- W3203166992 hasAuthorship W3203166992A5086333675 @default.
- W3203166992 hasConcept C124101348 @default.
- W3203166992 hasConcept C132525143 @default.
- W3203166992 hasConcept C153083717 @default.
- W3203166992 hasConcept C153180895 @default.
- W3203166992 hasConcept C154945302 @default.
- W3203166992 hasConcept C2779803651 @default.
- W3203166992 hasConcept C41008148 @default.
- W3203166992 hasConcept C739882 @default.
- W3203166992 hasConcept C76155785 @default.
- W3203166992 hasConcept C80444323 @default.
- W3203166992 hasConcept C94915269 @default.
- W3203166992 hasConceptScore W3203166992C124101348 @default.
- W3203166992 hasConceptScore W3203166992C132525143 @default.
- W3203166992 hasConceptScore W3203166992C153083717 @default.
- W3203166992 hasConceptScore W3203166992C153180895 @default.
- W3203166992 hasConceptScore W3203166992C154945302 @default.
- W3203166992 hasConceptScore W3203166992C2779803651 @default.
- W3203166992 hasConceptScore W3203166992C41008148 @default.
- W3203166992 hasConceptScore W3203166992C739882 @default.
- W3203166992 hasConceptScore W3203166992C76155785 @default.
- W3203166992 hasConceptScore W3203166992C80444323 @default.
- W3203166992 hasConceptScore W3203166992C94915269 @default.
- W3203166992 hasFunder F4320337345 @default.
- W3203166992 hasIssue "6" @default.
- W3203166992 hasLocation W32031669921 @default.
- W3203166992 hasLocation W32031669922 @default.
- W3203166992 hasOpenAccess W3203166992 @default.
- W3203166992 hasPrimaryLocation W32031669921 @default.
- W3203166992 hasRelatedWork W2076520961 @default.
- W3203166992 hasRelatedWork W2896600774 @default.
- W3203166992 hasRelatedWork W3003955104 @default.
- W3203166992 hasRelatedWork W3006520502 @default.
- W3203166992 hasRelatedWork W3040099731 @default.
- W3203166992 hasRelatedWork W3109367472 @default.
- W3203166992 hasRelatedWork W4280544492 @default.
- W3203166992 hasRelatedWork W4289406342 @default.