Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203198738> ?p ?o ?g. }
- W3203198738 endingPage "232" @default.
- W3203198738 startingPage "213" @default.
- W3203198738 abstract "Abstract Herein, an artificial neural network (ANN)-based approach for the efficient automated modeling and simulation of isotropic hyperelastic solids is presented. Starting from a large data set comprising deformations and corresponding stresses, a simple, physically based reduction of the problem’s dimensionality is performed in a data processing step. More specifically, three deformation type invariants serve as the input instead of the deformation tensor itself. In the same way, three corresponding stress coefficients replace the stress tensor in the output layer. These initially unknown values are calculated from a linear least square optimization problem for each data tuple. Using the reduced data set, an ANN-based constitutive model is trained by using standard machine learning methods. Furthermore, in order to ensure thermodynamic consistency, the previously trained network is modified by constructing a pseudo-potential within an integration step and a subsequent derivation which leads to a further ANN-based model. In the second part of this work, the proposed method is exemplarily used for the description of a highly nonlinear Ogden type material. Thereby, the necessary data set is collected from virtual experiments of discs with holes in pure plane stress modes, where influences of different loading types and specimen geometries on the resulting data sets are investigated. Afterwards, the collected data are used for the ANN training within the reduced data space, whereby an excellent approximation quality could be achieved with only one hidden layer comprising a low number of neurons. Finally, the application of the trained constitutive ANN for the simulation of two three-dimensional samples is shown. Thereby, a rather high accuracy could be achieved, although the occurring stresses are fully three-dimensional whereas the training data are taken from pure two-dimensional plane stress states." @default.
- W3203198738 created "2021-10-11" @default.
- W3203198738 creator A5011405214 @default.
- W3203198738 creator A5018525059 @default.
- W3203198738 creator A5053220620 @default.
- W3203198738 creator A5059225336 @default.
- W3203198738 creator A5084862505 @default.
- W3203198738 date "2021-10-06" @default.
- W3203198738 modified "2023-10-01" @default.
- W3203198738 title "Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks" @default.
- W3203198738 cites W1606775516 @default.
- W3203198738 cites W1966001767 @default.
- W3203198738 cites W1968865709 @default.
- W3203198738 cites W1995050782 @default.
- W3203198738 cites W2019757869 @default.
- W3203198738 cites W2021958191 @default.
- W3203198738 cites W2033793034 @default.
- W3203198738 cites W2039652752 @default.
- W3203198738 cites W2051835934 @default.
- W3203198738 cites W2064563136 @default.
- W3203198738 cites W2067696442 @default.
- W3203198738 cites W2112311198 @default.
- W3203198738 cites W2122406408 @default.
- W3203198738 cites W2133578162 @default.
- W3203198738 cites W2261676784 @default.
- W3203198738 cites W2321048850 @default.
- W3203198738 cites W2345737627 @default.
- W3203198738 cites W2539324467 @default.
- W3203198738 cites W2582174159 @default.
- W3203198738 cites W2624989300 @default.
- W3203198738 cites W2626934721 @default.
- W3203198738 cites W2734959120 @default.
- W3203198738 cites W2752999273 @default.
- W3203198738 cites W2759450335 @default.
- W3203198738 cites W2769214690 @default.
- W3203198738 cites W2791153237 @default.
- W3203198738 cites W2804156115 @default.
- W3203198738 cites W2884529566 @default.
- W3203198738 cites W2889287912 @default.
- W3203198738 cites W2897179466 @default.
- W3203198738 cites W2908963506 @default.
- W3203198738 cites W2911846113 @default.
- W3203198738 cites W2913872563 @default.
- W3203198738 cites W2920968208 @default.
- W3203198738 cites W2946680784 @default.
- W3203198738 cites W2951354480 @default.
- W3203198738 cites W2982699779 @default.
- W3203198738 cites W2985942842 @default.
- W3203198738 cites W2999081549 @default.
- W3203198738 cites W3013605131 @default.
- W3203198738 cites W3028072861 @default.
- W3203198738 cites W3033580147 @default.
- W3203198738 cites W3034987805 @default.
- W3203198738 cites W3042938067 @default.
- W3203198738 cites W3087920605 @default.
- W3203198738 cites W3102413575 @default.
- W3203198738 cites W3108104385 @default.
- W3203198738 cites W3108491918 @default.
- W3203198738 cites W3111771697 @default.
- W3203198738 cites W3114999158 @default.
- W3203198738 cites W3120550994 @default.
- W3203198738 cites W4243751566 @default.
- W3203198738 cites W4245654886 @default.
- W3203198738 cites W4253538687 @default.
- W3203198738 doi "https://doi.org/10.1007/s00466-021-02090-6" @default.
- W3203198738 hasPublicationYear "2021" @default.
- W3203198738 type Work @default.
- W3203198738 sameAs 3203198738 @default.
- W3203198738 citedByCount "21" @default.
- W3203198738 countsByYear W32031987382022 @default.
- W3203198738 countsByYear W32031987382023 @default.
- W3203198738 crossrefType "journal-article" @default.
- W3203198738 hasAuthorship W3203198738A5011405214 @default.
- W3203198738 hasAuthorship W3203198738A5018525059 @default.
- W3203198738 hasAuthorship W3203198738A5053220620 @default.
- W3203198738 hasAuthorship W3203198738A5059225336 @default.
- W3203198738 hasAuthorship W3203198738A5084862505 @default.
- W3203198738 hasBestOaLocation W32031987381 @default.
- W3203198738 hasConcept C111030470 @default.
- W3203198738 hasConcept C11413529 @default.
- W3203198738 hasConcept C121332964 @default.
- W3203198738 hasConcept C127413603 @default.
- W3203198738 hasConcept C135628077 @default.
- W3203198738 hasConcept C147370603 @default.
- W3203198738 hasConcept C154945302 @default.
- W3203198738 hasConcept C155281189 @default.
- W3203198738 hasConcept C158622935 @default.
- W3203198738 hasConcept C159985019 @default.
- W3203198738 hasConcept C177264268 @default.
- W3203198738 hasConcept C18140158 @default.
- W3203198738 hasConcept C184050105 @default.
- W3203198738 hasConcept C192562407 @default.
- W3203198738 hasConcept C199360897 @default.
- W3203198738 hasConcept C202973686 @default.
- W3203198738 hasConcept C204366326 @default.
- W3203198738 hasConcept C2524010 @default.
- W3203198738 hasConcept C2776436953 @default.
- W3203198738 hasConcept C33923547 @default.