Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203208579> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3203208579 endingPage "104591" @default.
- W3203208579 startingPage "104591" @default.
- W3203208579 abstract "Appointment scheduling in outpatient settings typically uses simple classification rules to assign patients to long or short appointment slots, based on the anticipated duration of the patient-physician consultation, i.e., the service time. For example, new patients are assigned longer appointment slots, and return patients are assigned shorter slots. While these rules are convenient, they fail to account for the significant variability in service time of outpatient visits.We present a data-mining approach that allows practices to predict service time based on patient characteristics and several other clinical attributes. This approach provides a decision-support tool that helps practices determine the length of time to allocate to a patient's appointment. Specifically, we use a neural network to accurately estimate service time for each patient based on his/her characteristics. The neural network is trained using eight years of real appointment data (2010 to 2018) from a local outpatient clinic. We compare the performance of the neural network predictions against commonly used classification rules, using a randomly sampled test dataset and a statistical test.Our results suggest that outpatient practices can refine their current practices by adopting a data-driven approach to determining slot lengths for appointments. The average absolute difference and the standard deviation of differences between the neural network predictions and the actual service times in practice (case study) are 5.7 min and 4.0 min, respectively. These two measures are significantly lower than the same comparison with the common classification rule (new patient versus return patient) at the clinic; i.e. average time and standard deviations are 14.3 min and 8.2 min, respectively.Neural network modeling can capture the effect of processes in a medical facility and create individualized predictions of patient service time with more accuracy." @default.
- W3203208579 created "2021-10-11" @default.
- W3203208579 creator A5025939916 @default.
- W3203208579 date "2021-12-01" @default.
- W3203208579 modified "2023-10-16" @default.
- W3203208579 title "A Decision-Making tool based on historical data for service time prediction in outpatient scheduling" @default.
- W3203208579 cites W1963549902 @default.
- W3203208579 cites W1982348007 @default.
- W3203208579 cites W2007261666 @default.
- W3203208579 cites W2023159070 @default.
- W3203208579 cites W2023339493 @default.
- W3203208579 cites W2028625526 @default.
- W3203208579 cites W2060557082 @default.
- W3203208579 cites W2072788456 @default.
- W3203208579 cites W2078724364 @default.
- W3203208579 cites W2085816387 @default.
- W3203208579 cites W2087663824 @default.
- W3203208579 cites W2143291553 @default.
- W3203208579 cites W2175592276 @default.
- W3203208579 cites W2472113677 @default.
- W3203208579 cites W2896098237 @default.
- W3203208579 cites W3006063281 @default.
- W3203208579 cites W3015226707 @default.
- W3203208579 cites W3090189846 @default.
- W3203208579 doi "https://doi.org/10.1016/j.ijmedinf.2021.104591" @default.
- W3203208579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34638011" @default.
- W3203208579 hasPublicationYear "2021" @default.
- W3203208579 type Work @default.
- W3203208579 sameAs 3203208579 @default.
- W3203208579 citedByCount "3" @default.
- W3203208579 countsByYear W32032085792022 @default.
- W3203208579 countsByYear W32032085792023 @default.
- W3203208579 crossrefType "journal-article" @default.
- W3203208579 hasAuthorship W3203208579A5025939916 @default.
- W3203208579 hasConcept C105795698 @default.
- W3203208579 hasConcept C119857082 @default.
- W3203208579 hasConcept C124101348 @default.
- W3203208579 hasConcept C126322002 @default.
- W3203208579 hasConcept C127413603 @default.
- W3203208579 hasConcept C136264566 @default.
- W3203208579 hasConcept C154945302 @default.
- W3203208579 hasConcept C162324750 @default.
- W3203208579 hasConcept C206729178 @default.
- W3203208579 hasConcept C21547014 @default.
- W3203208579 hasConcept C22679943 @default.
- W3203208579 hasConcept C2780378061 @default.
- W3203208579 hasConcept C3020110884 @default.
- W3203208579 hasConcept C33923547 @default.
- W3203208579 hasConcept C41008148 @default.
- W3203208579 hasConcept C50644808 @default.
- W3203208579 hasConcept C71924100 @default.
- W3203208579 hasConceptScore W3203208579C105795698 @default.
- W3203208579 hasConceptScore W3203208579C119857082 @default.
- W3203208579 hasConceptScore W3203208579C124101348 @default.
- W3203208579 hasConceptScore W3203208579C126322002 @default.
- W3203208579 hasConceptScore W3203208579C127413603 @default.
- W3203208579 hasConceptScore W3203208579C136264566 @default.
- W3203208579 hasConceptScore W3203208579C154945302 @default.
- W3203208579 hasConceptScore W3203208579C162324750 @default.
- W3203208579 hasConceptScore W3203208579C206729178 @default.
- W3203208579 hasConceptScore W3203208579C21547014 @default.
- W3203208579 hasConceptScore W3203208579C22679943 @default.
- W3203208579 hasConceptScore W3203208579C2780378061 @default.
- W3203208579 hasConceptScore W3203208579C3020110884 @default.
- W3203208579 hasConceptScore W3203208579C33923547 @default.
- W3203208579 hasConceptScore W3203208579C41008148 @default.
- W3203208579 hasConceptScore W3203208579C50644808 @default.
- W3203208579 hasConceptScore W3203208579C71924100 @default.
- W3203208579 hasLocation W32032085791 @default.
- W3203208579 hasLocation W32032085792 @default.
- W3203208579 hasOpenAccess W3203208579 @default.
- W3203208579 hasPrimaryLocation W32032085791 @default.
- W3203208579 hasRelatedWork W2748952813 @default.
- W3203208579 hasRelatedWork W2899084033 @default.
- W3203208579 hasRelatedWork W2961085424 @default.
- W3203208579 hasRelatedWork W3046775127 @default.
- W3203208579 hasRelatedWork W3170094116 @default.
- W3203208579 hasRelatedWork W4285260836 @default.
- W3203208579 hasRelatedWork W4286629047 @default.
- W3203208579 hasRelatedWork W4306321456 @default.
- W3203208579 hasRelatedWork W4306674287 @default.
- W3203208579 hasRelatedWork W4224009465 @default.
- W3203208579 hasVolume "156" @default.
- W3203208579 isParatext "false" @default.
- W3203208579 isRetracted "false" @default.
- W3203208579 magId "3203208579" @default.
- W3203208579 workType "article" @default.