Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203223704> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3203223704 endingPage "105838" @default.
- W3203223704 startingPage "105838" @default.
- W3203223704 abstract "In an industrial IoT setting, ensuring the quality of sensor data is a must when data-driven algorithms operate on the upper layers of the control system. Unfortunately, the common place in industrial facilities is to find sensor time series heavily corrupted by noise and outliers. This work proposes a purely data-driven self-supervised learning-based approach, based on a blind denoising autoencoder, for real time denoising of industrial sensor data. The term blind stresses that no prior knowledge about the noise is required for denoising, in contrast to typical denoising autoencoders. Blind denoising is achieved by using a noise contrastive estimation (NCE) regularization on the latent space of the autoencoder, which not only helps to denoise but also induces a meaningful and smooth latent space that can be exploited in other downstream tasks. Experimental evaluation in both a simulated system and a real industrial process shows that the proposed technique outperforms classical denoising methods." @default.
- W3203223704 created "2021-10-11" @default.
- W3203223704 creator A5013091254 @default.
- W3203223704 creator A5069278422 @default.
- W3203223704 date "2023-04-01" @default.
- W3203223704 modified "2023-10-03" @default.
- W3203223704 title "Contrastive blind denoising autoencoder for real time denoising of industrial IoT sensor data" @default.
- W3203223704 cites W2025768430 @default.
- W3203223704 cites W2083799719 @default.
- W3203223704 cites W2100495367 @default.
- W3203223704 cites W2146842127 @default.
- W3203223704 cites W2150436340 @default.
- W3203223704 cites W2157331557 @default.
- W3203223704 cites W219040644 @default.
- W3203223704 cites W2410531948 @default.
- W3203223704 cites W2737368828 @default.
- W3203223704 cites W2794266846 @default.
- W3203223704 cites W2808611867 @default.
- W3203223704 cites W2912748932 @default.
- W3203223704 cites W2915377492 @default.
- W3203223704 cites W2919054368 @default.
- W3203223704 cites W2946493557 @default.
- W3203223704 cites W2964049407 @default.
- W3203223704 cites W2988984361 @default.
- W3203223704 cites W2998480740 @default.
- W3203223704 cites W3070038910 @default.
- W3203223704 cites W3082671752 @default.
- W3203223704 cites W3207362856 @default.
- W3203223704 cites W3213059358 @default.
- W3203223704 cites W3216940482 @default.
- W3203223704 doi "https://doi.org/10.1016/j.engappai.2023.105838" @default.
- W3203223704 hasPublicationYear "2023" @default.
- W3203223704 type Work @default.
- W3203223704 sameAs 3203223704 @default.
- W3203223704 citedByCount "2" @default.
- W3203223704 countsByYear W32032237042023 @default.
- W3203223704 crossrefType "journal-article" @default.
- W3203223704 hasAuthorship W3203223704A5013091254 @default.
- W3203223704 hasAuthorship W3203223704A5069278422 @default.
- W3203223704 hasBestOaLocation W32032237042 @default.
- W3203223704 hasConcept C101738243 @default.
- W3203223704 hasConcept C108583219 @default.
- W3203223704 hasConcept C115961682 @default.
- W3203223704 hasConcept C119857082 @default.
- W3203223704 hasConcept C153180895 @default.
- W3203223704 hasConcept C154945302 @default.
- W3203223704 hasConcept C163294075 @default.
- W3203223704 hasConcept C202474056 @default.
- W3203223704 hasConcept C23431618 @default.
- W3203223704 hasConcept C2781238097 @default.
- W3203223704 hasConcept C30814859 @default.
- W3203223704 hasConcept C31972630 @default.
- W3203223704 hasConcept C41008148 @default.
- W3203223704 hasConcept C739882 @default.
- W3203223704 hasConcept C79337645 @default.
- W3203223704 hasConcept C99498987 @default.
- W3203223704 hasConceptScore W3203223704C101738243 @default.
- W3203223704 hasConceptScore W3203223704C108583219 @default.
- W3203223704 hasConceptScore W3203223704C115961682 @default.
- W3203223704 hasConceptScore W3203223704C119857082 @default.
- W3203223704 hasConceptScore W3203223704C153180895 @default.
- W3203223704 hasConceptScore W3203223704C154945302 @default.
- W3203223704 hasConceptScore W3203223704C163294075 @default.
- W3203223704 hasConceptScore W3203223704C202474056 @default.
- W3203223704 hasConceptScore W3203223704C23431618 @default.
- W3203223704 hasConceptScore W3203223704C2781238097 @default.
- W3203223704 hasConceptScore W3203223704C30814859 @default.
- W3203223704 hasConceptScore W3203223704C31972630 @default.
- W3203223704 hasConceptScore W3203223704C41008148 @default.
- W3203223704 hasConceptScore W3203223704C739882 @default.
- W3203223704 hasConceptScore W3203223704C79337645 @default.
- W3203223704 hasConceptScore W3203223704C99498987 @default.
- W3203223704 hasFunder F4320331146 @default.
- W3203223704 hasLocation W32032237041 @default.
- W3203223704 hasLocation W32032237042 @default.
- W3203223704 hasOpenAccess W3203223704 @default.
- W3203223704 hasPrimaryLocation W32032237041 @default.
- W3203223704 hasRelatedWork W2081458845 @default.
- W3203223704 hasRelatedWork W2483420468 @default.
- W3203223704 hasRelatedWork W2587789887 @default.
- W3203223704 hasRelatedWork W2964457614 @default.
- W3203223704 hasRelatedWork W3044458868 @default.
- W3203223704 hasRelatedWork W3136392033 @default.
- W3203223704 hasRelatedWork W4213225422 @default.
- W3203223704 hasRelatedWork W4220775285 @default.
- W3203223704 hasRelatedWork W4224044423 @default.
- W3203223704 hasRelatedWork W4318147667 @default.
- W3203223704 hasVolume "120" @default.
- W3203223704 isParatext "false" @default.
- W3203223704 isRetracted "false" @default.
- W3203223704 magId "3203223704" @default.
- W3203223704 workType "article" @default.