Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203239027> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3203239027 abstract "The field of biosciences have progressive to a higher extent and have generated large amounts of information from Electronic Health Records. This have given rise to the acute need of knowledge generation from this enormous amount of data. Data mining methods and machine learning play a major role in this aspect of biosciences. An adequate Type 2 Diabetes unified administration system and regular timely checkup has key role in treatment of Type-2 Diabetes at initial stages. In Recent years there is rapid increase of evolution of Machine learning technique and FIMMG Dataset which is category of Electronic Health Record. Over fitting, Model interpretability and computational cost are the challenges while managing these much of information. Based on these challenges, we proposed a Machine Learning technique called Sparse Balanced Support Vector Machine (SBSVM) Based Type 2 Diabetes discovering by using Electronic Health record dataset named FIMMG dataset. We have collected data for Type 2 diagnosis from uniform age group that related to Electronic Health records such as exemptions, examination and drug prescription. Machine Learning and Deep neural networks are mainly used in solving task. Results proved that Sparse Based SVM provide better predictive performance and computation time when compared to techniques that are present in existing system. To increase model interpretability, we introduced induced sparsity which manages data which have high dimension. In proposed system we used Random Forest tree, Linear Regression, Decision Tree, Voting Classifier algorithms. Among all algorithms we found Random Forest tree accuracy, sensitivity is high" @default.
- W3203239027 created "2021-10-11" @default.
- W3203239027 creator A5028792135 @default.
- W3203239027 date "2021-09-01" @default.
- W3203239027 modified "2023-09-23" @default.
- W3203239027 title "Detection of Type2 Diabetes Using FIMMG Dataset based on Machine Learning Algorithms" @default.
- W3203239027 cites W1500895378 @default.
- W3203239027 cites W1523985187 @default.
- W3203239027 cites W1569098853 @default.
- W3203239027 cites W1618905105 @default.
- W3203239027 cites W1749992802 @default.
- W3203239027 cites W1969270824 @default.
- W3203239027 cites W1980566721 @default.
- W3203239027 cites W2009478042 @default.
- W3203239027 cites W2013121895 @default.
- W3203239027 cites W2020562574 @default.
- W3203239027 cites W2023248478 @default.
- W3203239027 cites W2032300448 @default.
- W3203239027 cites W2073366721 @default.
- W3203239027 cites W2074682976 @default.
- W3203239027 cites W2104026855 @default.
- W3203239027 cites W2109449402 @default.
- W3203239027 cites W2113169966 @default.
- W3203239027 cites W2115706991 @default.
- W3203239027 cites W2126607811 @default.
- W3203239027 cites W2131414141 @default.
- W3203239027 cites W2139758155 @default.
- W3203239027 cites W2297432279 @default.
- W3203239027 cites W2379581788 @default.
- W3203239027 cites W2503896935 @default.
- W3203239027 cites W2525984666 @default.
- W3203239027 cites W2528775700 @default.
- W3203239027 cites W2950722229 @default.
- W3203239027 hasPublicationYear "2021" @default.
- W3203239027 type Work @default.
- W3203239027 sameAs 3203239027 @default.
- W3203239027 citedByCount "0" @default.
- W3203239027 crossrefType "journal-article" @default.
- W3203239027 hasAuthorship W3203239027A5028792135 @default.
- W3203239027 hasConcept C11413529 @default.
- W3203239027 hasConcept C119857082 @default.
- W3203239027 hasConcept C12267149 @default.
- W3203239027 hasConcept C124101348 @default.
- W3203239027 hasConcept C154945302 @default.
- W3203239027 hasConcept C160735492 @default.
- W3203239027 hasConcept C162324750 @default.
- W3203239027 hasConcept C169258074 @default.
- W3203239027 hasConcept C2781067378 @default.
- W3203239027 hasConcept C3019952477 @default.
- W3203239027 hasConcept C41008148 @default.
- W3203239027 hasConcept C50522688 @default.
- W3203239027 hasConcept C84525736 @default.
- W3203239027 hasConcept C95623464 @default.
- W3203239027 hasConceptScore W3203239027C11413529 @default.
- W3203239027 hasConceptScore W3203239027C119857082 @default.
- W3203239027 hasConceptScore W3203239027C12267149 @default.
- W3203239027 hasConceptScore W3203239027C124101348 @default.
- W3203239027 hasConceptScore W3203239027C154945302 @default.
- W3203239027 hasConceptScore W3203239027C160735492 @default.
- W3203239027 hasConceptScore W3203239027C162324750 @default.
- W3203239027 hasConceptScore W3203239027C169258074 @default.
- W3203239027 hasConceptScore W3203239027C2781067378 @default.
- W3203239027 hasConceptScore W3203239027C3019952477 @default.
- W3203239027 hasConceptScore W3203239027C41008148 @default.
- W3203239027 hasConceptScore W3203239027C50522688 @default.
- W3203239027 hasConceptScore W3203239027C84525736 @default.
- W3203239027 hasConceptScore W3203239027C95623464 @default.
- W3203239027 hasIssue "9" @default.
- W3203239027 hasLocation W32032390271 @default.
- W3203239027 hasOpenAccess W3203239027 @default.
- W3203239027 hasPrimaryLocation W32032390271 @default.
- W3203239027 hasRelatedWork W2613354317 @default.
- W3203239027 hasRelatedWork W2914959816 @default.
- W3203239027 hasRelatedWork W2944848758 @default.
- W3203239027 hasRelatedWork W2966849126 @default.
- W3203239027 hasRelatedWork W2970838092 @default.
- W3203239027 hasRelatedWork W2974351173 @default.
- W3203239027 hasRelatedWork W2978273980 @default.
- W3203239027 hasRelatedWork W2984662742 @default.
- W3203239027 hasRelatedWork W2990291356 @default.
- W3203239027 hasRelatedWork W3003397049 @default.
- W3203239027 hasRelatedWork W3006616141 @default.
- W3203239027 hasRelatedWork W3011875475 @default.
- W3203239027 hasRelatedWork W3013235542 @default.
- W3203239027 hasRelatedWork W3021382697 @default.
- W3203239027 hasRelatedWork W3032901101 @default.
- W3203239027 hasRelatedWork W3042449038 @default.
- W3203239027 hasRelatedWork W3111529524 @default.
- W3203239027 hasRelatedWork W3114736863 @default.
- W3203239027 hasRelatedWork W3128661025 @default.
- W3203239027 hasRelatedWork W3173049204 @default.
- W3203239027 hasVolume "8" @default.
- W3203239027 isParatext "false" @default.
- W3203239027 isRetracted "false" @default.
- W3203239027 magId "3203239027" @default.
- W3203239027 workType "article" @default.