Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203246717> ?p ?o ?g. }
- W3203246717 endingPage "1104" @default.
- W3203246717 startingPage "1084" @default.
- W3203246717 abstract "Abstract This research presents a new approach which addresses the conversion of earthquake magnitude as a supervised machine-learning problem through a multistage approach. First, the moment magnitude ( M w ) calculations were extended to lower magnitude earthquakes using the spectral P-wave analyses of the vertical component seismograms to improve the scaling relation of M w and the local magnitude ( M L ) of 138 earthquakes in northeastern Egypt. Second, using unsupervised clustering and regression analysis, we applied the k -means clustering technique to subdivide the mapped area into multiple seismic activity zones. This clustering phase created five spatially close seismic areas for training regression algorithms. Supervised regression analysis of each seismic area was simpler and more accurate. Conversion relations between M w and M L were calculated by linear regression, general orthogonal regression (GOR), and random sample consensus (RANSAC) regression techniques. RANSAC and GOR produced better results than linear regression, which provides evidence for the effects of outliers on regression accuracy. Moreover, the overall multistage hybrid approach produced substantial improvements in the measured-predicted dataset residuals when individual seismic zones rather than all datasets were considered. In 90% of the analyzed cases, M w values could be regarded as M L values within 0.2 magnitude units. Moreover, predicted magnitude conversion relations in the current study corresponded well to magnitude conversion relations in other seismogenic areas of Egypt." @default.
- W3203246717 created "2021-10-11" @default.
- W3203246717 creator A5027798513 @default.
- W3203246717 creator A5051219806 @default.
- W3203246717 creator A5081647060 @default.
- W3203246717 date "2021-01-01" @default.
- W3203246717 modified "2023-10-17" @default.
- W3203246717 title "Production of a homogeneous seismic catalog based on machine learning for northeast Egypt" @default.
- W3203246717 cites W1575387439 @default.
- W3203246717 cites W1629132018 @default.
- W3203246717 cites W1697235097 @default.
- W3203246717 cites W185728425 @default.
- W3203246717 cites W1956217412 @default.
- W3203246717 cites W1977703948 @default.
- W3203246717 cites W1988394726 @default.
- W3203246717 cites W1992223517 @default.
- W3203246717 cites W1992626998 @default.
- W3203246717 cites W1994553199 @default.
- W3203246717 cites W2005061696 @default.
- W3203246717 cites W2015948680 @default.
- W3203246717 cites W2040806534 @default.
- W3203246717 cites W2051224630 @default.
- W3203246717 cites W2067230054 @default.
- W3203246717 cites W2067816083 @default.
- W3203246717 cites W2072983018 @default.
- W3203246717 cites W2081831244 @default.
- W3203246717 cites W2085261163 @default.
- W3203246717 cites W2093897600 @default.
- W3203246717 cites W2105658614 @default.
- W3203246717 cites W2105973656 @default.
- W3203246717 cites W2110483691 @default.
- W3203246717 cites W2111145274 @default.
- W3203246717 cites W2112432366 @default.
- W3203246717 cites W2115208878 @default.
- W3203246717 cites W2124730627 @default.
- W3203246717 cites W2146404654 @default.
- W3203246717 cites W2149729234 @default.
- W3203246717 cites W2160944286 @default.
- W3203246717 cites W2168091305 @default.
- W3203246717 cites W2169960235 @default.
- W3203246717 cites W2236623899 @default.
- W3203246717 cites W2256098214 @default.
- W3203246717 cites W2319736957 @default.
- W3203246717 cites W2336396570 @default.
- W3203246717 cites W2515036062 @default.
- W3203246717 cites W2808976027 @default.
- W3203246717 cites W2963174546 @default.
- W3203246717 cites W3028064932 @default.
- W3203246717 cites W3033306175 @default.
- W3203246717 cites W3170164971 @default.
- W3203246717 cites W35739717 @default.
- W3203246717 cites W397124086 @default.
- W3203246717 cites W4250303119 @default.
- W3203246717 cites W2016074156 @default.
- W3203246717 doi "https://doi.org/10.1515/geo-2020-0295" @default.
- W3203246717 hasPublicationYear "2021" @default.
- W3203246717 type Work @default.
- W3203246717 sameAs 3203246717 @default.
- W3203246717 citedByCount "3" @default.
- W3203246717 countsByYear W32032467172022 @default.
- W3203246717 countsByYear W32032467172023 @default.
- W3203246717 crossrefType "journal-article" @default.
- W3203246717 hasAuthorship W3203246717A5027798513 @default.
- W3203246717 hasAuthorship W3203246717A5051219806 @default.
- W3203246717 hasAuthorship W3203246717A5081647060 @default.
- W3203246717 hasBestOaLocation W32032467171 @default.
- W3203246717 hasConcept C105795698 @default.
- W3203246717 hasConcept C114744707 @default.
- W3203246717 hasConcept C115961682 @default.
- W3203246717 hasConcept C121332964 @default.
- W3203246717 hasConcept C126691448 @default.
- W3203246717 hasConcept C127313418 @default.
- W3203246717 hasConcept C1276947 @default.
- W3203246717 hasConcept C152877465 @default.
- W3203246717 hasConcept C154945302 @default.
- W3203246717 hasConcept C165205528 @default.
- W3203246717 hasConcept C169744125 @default.
- W3203246717 hasConcept C33923547 @default.
- W3203246717 hasConcept C41008148 @default.
- W3203246717 hasConcept C48921125 @default.
- W3203246717 hasConcept C70259352 @default.
- W3203246717 hasConcept C73555534 @default.
- W3203246717 hasConcept C79337645 @default.
- W3203246717 hasConcept C83546350 @default.
- W3203246717 hasConceptScore W3203246717C105795698 @default.
- W3203246717 hasConceptScore W3203246717C114744707 @default.
- W3203246717 hasConceptScore W3203246717C115961682 @default.
- W3203246717 hasConceptScore W3203246717C121332964 @default.
- W3203246717 hasConceptScore W3203246717C126691448 @default.
- W3203246717 hasConceptScore W3203246717C127313418 @default.
- W3203246717 hasConceptScore W3203246717C1276947 @default.
- W3203246717 hasConceptScore W3203246717C152877465 @default.
- W3203246717 hasConceptScore W3203246717C154945302 @default.
- W3203246717 hasConceptScore W3203246717C165205528 @default.
- W3203246717 hasConceptScore W3203246717C169744125 @default.
- W3203246717 hasConceptScore W3203246717C33923547 @default.
- W3203246717 hasConceptScore W3203246717C41008148 @default.
- W3203246717 hasConceptScore W3203246717C48921125 @default.