Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203293076> ?p ?o ?g. }
- W3203293076 endingPage "126423" @default.
- W3203293076 startingPage "126423" @default.
- W3203293076 abstract "We develop a novel temporal complex network approach to quantify the US county level spread dynamics of COVID-19. We use both conventional econometric and Machine Learning (ML) models that incorporate the local spread dynamics, COVID-19 cases and death, and Google search activities to assess if incorporating information about local spreads improves the predictive accuracy of models for the US stock market. The results suggest that COVID-19 cases and deaths, its local spread, and Google searches have impacts on abnormal stock prices between January 2020 to May 2020. Furthermore, incorporating information about local spread significantly improves the performance of forecasting models of the abnormal stock prices at longer forecasting horizons." @default.
- W3203293076 created "2021-10-11" @default.
- W3203293076 creator A5010291427 @default.
- W3203293076 creator A5034018815 @default.
- W3203293076 creator A5079239866 @default.
- W3203293076 creator A5089679332 @default.
- W3203293076 date "2022-03-01" @default.
- W3203293076 modified "2023-10-18" @default.
- W3203293076 title "Impacts of COVID-19 local spread and Google search trend on the US stock market" @default.
- W3203293076 cites W1643010052 @default.
- W3203293076 cites W1876825148 @default.
- W3203293076 cites W1971905795 @default.
- W3203293076 cites W1981394399 @default.
- W3203293076 cites W1989177520 @default.
- W3203293076 cites W1990339712 @default.
- W3203293076 cites W1996796857 @default.
- W3203293076 cites W1999814123 @default.
- W3203293076 cites W2001513187 @default.
- W3203293076 cites W2026092445 @default.
- W3203293076 cites W2031077005 @default.
- W3203293076 cites W2052686342 @default.
- W3203293076 cites W2066296745 @default.
- W3203293076 cites W2066393833 @default.
- W3203293076 cites W2070267658 @default.
- W3203293076 cites W2099218749 @default.
- W3203293076 cites W2105148444 @default.
- W3203293076 cites W2140585983 @default.
- W3203293076 cites W2145339411 @default.
- W3203293076 cites W2153624566 @default.
- W3203293076 cites W2157261231 @default.
- W3203293076 cites W2164410397 @default.
- W3203293076 cites W2171468534 @default.
- W3203293076 cites W2178225550 @default.
- W3203293076 cites W2178583389 @default.
- W3203293076 cites W2587765579 @default.
- W3203293076 cites W2757481656 @default.
- W3203293076 cites W2771915725 @default.
- W3203293076 cites W2779854950 @default.
- W3203293076 cites W2800514555 @default.
- W3203293076 cites W2803614147 @default.
- W3203293076 cites W2808591417 @default.
- W3203293076 cites W2889815030 @default.
- W3203293076 cites W2910997262 @default.
- W3203293076 cites W2913781082 @default.
- W3203293076 cites W2922705140 @default.
- W3203293076 cites W2955117967 @default.
- W3203293076 cites W2964745687 @default.
- W3203293076 cites W2972758678 @default.
- W3203293076 cites W2984477403 @default.
- W3203293076 cites W3014692697 @default.
- W3203293076 cites W3014934384 @default.
- W3203293076 cites W3017185871 @default.
- W3203293076 cites W3026812076 @default.
- W3203293076 cites W3028843255 @default.
- W3203293076 cites W3039400575 @default.
- W3203293076 cites W3082155806 @default.
- W3203293076 cites W3082269629 @default.
- W3203293076 cites W3083295824 @default.
- W3203293076 cites W3121351758 @default.
- W3203293076 cites W3121365984 @default.
- W3203293076 cites W3121729025 @default.
- W3203293076 cites W3122180878 @default.
- W3203293076 cites W3122714990 @default.
- W3203293076 cites W3122920557 @default.
- W3203293076 cites W3123568535 @default.
- W3203293076 cites W3124986135 @default.
- W3203293076 cites W3125466232 @default.
- W3203293076 cites W3125481687 @default.
- W3203293076 cites W3126081245 @default.
- W3203293076 cites W3133777397 @default.
- W3203293076 cites W4220971689 @default.
- W3203293076 cites W4244643682 @default.
- W3203293076 cites W4245500610 @default.
- W3203293076 doi "https://doi.org/10.1016/j.physa.2021.126423" @default.
- W3203293076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34866767" @default.
- W3203293076 hasPublicationYear "2022" @default.
- W3203293076 type Work @default.
- W3203293076 sameAs 3203293076 @default.
- W3203293076 citedByCount "10" @default.
- W3203293076 countsByYear W32032930762022 @default.
- W3203293076 countsByYear W32032930762023 @default.
- W3203293076 crossrefType "journal-article" @default.
- W3203293076 hasAuthorship W3203293076A5010291427 @default.
- W3203293076 hasAuthorship W3203293076A5034018815 @default.
- W3203293076 hasAuthorship W3203293076A5079239866 @default.
- W3203293076 hasAuthorship W3203293076A5089679332 @default.
- W3203293076 hasBestOaLocation W32032930761 @default.
- W3203293076 hasConcept C106159729 @default.
- W3203293076 hasConcept C116675565 @default.
- W3203293076 hasConcept C136764020 @default.
- W3203293076 hasConcept C142724271 @default.
- W3203293076 hasConcept C149782125 @default.
- W3203293076 hasConcept C159047783 @default.
- W3203293076 hasConcept C162324750 @default.
- W3203293076 hasConcept C166957645 @default.
- W3203293076 hasConcept C171089853 @default.
- W3203293076 hasConcept C204036174 @default.
- W3203293076 hasConcept C205649164 @default.