Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203312410> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3203312410 endingPage "126492" @default.
- W3203312410 startingPage "126492" @default.
- W3203312410 abstract "Unbalanced distribution of trips during the time is one of the factors influencing traffic congestion at some hours of a day. Identifying the significant factors on travelers’ departure time choice and predicting their behavior helps maintain the balance in the time distribution of trips. For this purpose, this study employs and compares two machine learning and probabilistic approaches to model the departure time choice, including four choices, morning peak, noon peak, evening peak, and non-peak hours. Probabilistic support vector machine (PSVM) and multinomial logit (MNL) models calibrated based on the origin–destination data of Qazvin, and the evaluation and comparison of these two models made based on two applications of identifying the significant factors on the departure time and predicting the departure time. In terms of interpretability, the MNL model results have an indisputable advantage due to the lack of interpretable coefficients and parameters in the PSVM model. On the other hand, machine learning models’ predictive power partially covers the disadvantage of not being interpretable. The results show that the PSVM model can predict the departure time with 53.96% accuracy than the 49.98% accuracy of the MNL model. The maximum balanced accuracy for predicting morning peak, noon peak, and non-peak options is 69%, 53%, and 60%, respectively; obtained by the PSVM model and the MNL model predicts the evening peak option with a balanced accuracy of 52% more accurate than PSVM." @default.
- W3203312410 created "2021-10-11" @default.
- W3203312410 creator A5054207854 @default.
- W3203312410 creator A5065383794 @default.
- W3203312410 creator A5069289166 @default.
- W3203312410 date "2022-01-01" @default.
- W3203312410 modified "2023-09-27" @default.
- W3203312410 title "Machine learning approach versus probabilistic approach to model the departure time of non-mandatory trips" @default.
- W3203312410 cites W1967444754 @default.
- W3203312410 cites W1969768256 @default.
- W3203312410 cites W1984758736 @default.
- W3203312410 cites W2001624534 @default.
- W3203312410 cites W2029223998 @default.
- W3203312410 cites W2040743432 @default.
- W3203312410 cites W2107647072 @default.
- W3203312410 cites W2166636227 @default.
- W3203312410 cites W2587802550 @default.
- W3203312410 cites W2737830997 @default.
- W3203312410 cites W2762553076 @default.
- W3203312410 cites W2782280549 @default.
- W3203312410 cites W2794778778 @default.
- W3203312410 cites W2889960786 @default.
- W3203312410 cites W2913997948 @default.
- W3203312410 cites W2924028299 @default.
- W3203312410 cites W2951684046 @default.
- W3203312410 cites W2969785325 @default.
- W3203312410 cites W2981836045 @default.
- W3203312410 cites W2990614182 @default.
- W3203312410 cites W3006374477 @default.
- W3203312410 cites W3139170559 @default.
- W3203312410 doi "https://doi.org/10.1016/j.physa.2021.126492" @default.
- W3203312410 hasPublicationYear "2022" @default.
- W3203312410 type Work @default.
- W3203312410 sameAs 3203312410 @default.
- W3203312410 citedByCount "1" @default.
- W3203312410 countsByYear W32033124102022 @default.
- W3203312410 crossrefType "journal-article" @default.
- W3203312410 hasAuthorship W3203312410A5054207854 @default.
- W3203312410 hasAuthorship W3203312410A5065383794 @default.
- W3203312410 hasAuthorship W3203312410A5069289166 @default.
- W3203312410 hasConcept C105795698 @default.
- W3203312410 hasConcept C119857082 @default.
- W3203312410 hasConcept C121332964 @default.
- W3203312410 hasConcept C12267149 @default.
- W3203312410 hasConcept C1276947 @default.
- W3203312410 hasConcept C154945302 @default.
- W3203312410 hasConcept C2776476923 @default.
- W3203312410 hasConcept C2781067378 @default.
- W3203312410 hasConcept C33923547 @default.
- W3203312410 hasConcept C41008148 @default.
- W3203312410 hasConcept C49937458 @default.
- W3203312410 hasConcept C58650310 @default.
- W3203312410 hasConceptScore W3203312410C105795698 @default.
- W3203312410 hasConceptScore W3203312410C119857082 @default.
- W3203312410 hasConceptScore W3203312410C121332964 @default.
- W3203312410 hasConceptScore W3203312410C12267149 @default.
- W3203312410 hasConceptScore W3203312410C1276947 @default.
- W3203312410 hasConceptScore W3203312410C154945302 @default.
- W3203312410 hasConceptScore W3203312410C2776476923 @default.
- W3203312410 hasConceptScore W3203312410C2781067378 @default.
- W3203312410 hasConceptScore W3203312410C33923547 @default.
- W3203312410 hasConceptScore W3203312410C41008148 @default.
- W3203312410 hasConceptScore W3203312410C49937458 @default.
- W3203312410 hasConceptScore W3203312410C58650310 @default.
- W3203312410 hasLocation W32033124101 @default.
- W3203312410 hasOpenAccess W3203312410 @default.
- W3203312410 hasPrimaryLocation W32033124101 @default.
- W3203312410 hasRelatedWork W2103398089 @default.
- W3203312410 hasRelatedWork W3006943036 @default.
- W3203312410 hasRelatedWork W3012234327 @default.
- W3203312410 hasRelatedWork W3191046242 @default.
- W3203312410 hasRelatedWork W4200480707 @default.
- W3203312410 hasRelatedWork W4205364923 @default.
- W3203312410 hasRelatedWork W4205958290 @default.
- W3203312410 hasRelatedWork W4206534706 @default.
- W3203312410 hasRelatedWork W4229079080 @default.
- W3203312410 hasRelatedWork W4294031299 @default.
- W3203312410 hasVolume "586" @default.
- W3203312410 isParatext "false" @default.
- W3203312410 isRetracted "false" @default.
- W3203312410 magId "3203312410" @default.
- W3203312410 workType "article" @default.